To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractions are represented as two sets of integers. The product of numbers from the first set gives the fraction numerator, the product of numbers from the second set gives the fraction denominator. However, it turned out that the programs that work with fractions in this representations aren't complete, they lack supporting the operation of reducing fractions. Implement this operation and the Empire won't forget you.

Input

The first input line contains two space-separated integers n, m (1 ≤ n, m ≤ 105) that show how many numbers the first set (the numerator) and the second set (the denominator) contain, correspondingly.

The second line contains n space-separated integers: a1, a2, ..., an (1 ≤ ai ≤ 107) — the numbers that are multiplied to produce the numerator.

The third line contains m space-separated integers: b1, b2, ..., bm (1 ≤ bi ≤ 107) — the numbers that are multiplied to produce the denominator.

Output

Print the answer to the problem in the form, similar to the form of the input data. The number of values in the sets you print nout, mout must satisfy the inequality 1 ≤ nout, mout ≤ 105, and the actual values in the sets aout, i and bout, i must satisfy the inequality 1 ≤ aout, i, bout, i ≤ 107.

Separate the values in the lines by spaces. The printed fraction must be reduced, that is, there mustn't be such integer x (x > 1), that the numerator and the denominator of the printed fraction are divisible by x. If there are several matching answers, print any of them.

Examples

Input
3 2
100 5 2
50 10
Output
2 3
2 1
1 1 1
Input
4 3
2 5 10 20
100 1 3
Output
1 1
20
3

Note

In the first test sample the numerator equals 1000, the denominator equals 500. If we reduce fraction 1000/500 by the greatest common divisor of the numerator and the denominator (by 500), we obtain fraction 2/1.

In the second test sample the numerator equals 2000, the denominator equals 300. If we reduce fraction 2000/300 by the greatest common divisor of the numerator and the denominator (by 100),

OJ-ID:
CodeForce 222C

author:
Caution_X

date of submission:
20191012

tags:
分解质因数

description modelling:
给出分子分母,求通分。(分子分母以一系列数的乘积给出)

major steps to solve it:
1.分别把分子分母分解质因数
2.通分

warnings:
分解质因数后有两种处理方案:
①:比较分解后分子分母的质因数,然后消去分子分母中相同的质因数(导致(溢出)WA和TLE)
②:用原来分子的乘积和分母的质因数相消,再用原来分母的乘积和分子的质因数相消
采用方案②

AC code:

#include<cstdio>
#include<cstring>
using namespace std;
int prime[]={};
int a[],b[];
int ap[],bp[];
void check(int *x,int *y,int len)//分解因子
{
for(int i=;i<len;++i)
for(int j=x[i];j>;j/=prime[j])
y[prime[j]]++;//因子数+1
}
void print(int *x,int *y,int len)
{
int cnt;
for(int i=;i<len;++i)
{
cnt=;
for(int j=x[i];j>;j/=prime[j])
if(y[prime[j]]>) y[prime[j]]--;
else cnt*=prime[j];
if(i==) printf("%d",cnt);
else printf(" %d",cnt);
}
puts("");
}
int main()
{
int n,m;
prime[]=;
for(int i=;i<=;++i)
if(!prime[i])
{
prime[i]=i;
for(int j=*i;j<=;j+=i)
prime[j]=i;
}
scanf("%d%d",&n,&m);
for(int i=;i<n;++i) scanf("%d",a+i);
for(int i=;i<m;++i) scanf("%d",b+i);
check(a,ap,n);check(b,bp,m);
printf("%d %d\n",n,m);
print(a,bp,n);print(b,ap,m);
return ;
}

CodeForce 222C Reducing Fractions的更多相关文章

  1. CF思维联系–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)

    ACM思维题训练集合 To confuse the opponents, the Galactic Empire represents fractions in an unusual format. ...

  2. CF222C Reducing Fractions

    题目大意: 给出两个集合,第一个集合数的乘积是分子,第二个集合的数的乘积是分母,要求够造一个同样的集合,但是得到的分数是最简分数. 分析: 寻找思路并不复杂,对两个集合的每个数进行质因数分解,然后统计 ...

  3. ACM思维题训练 Section A

    题目地址: 选题为入门的Codeforce div2/div1的C题和D题. 题解: A:CF思维联系–CodeForces -214C (拓扑排序+思维+贪心) B:CF–思维练习-- CodeFo ...

  4. codeforces 练习

    codeforces 627 D. Preorder Test 二分 + 树dp 做logn次树dp codeforces 578D.LCS Again 给出一个字符串str,长度n<=10^6 ...

  5. Codeforces Round #137 (Div. 2)

    A. Shooshuns and Sequence 显然\([k,n]\)之间所有数均要相同,为了求最少步数,即最多模拟\(n\)次操作即可. B. Cosmic Tables 映射\(x_i,y_i ...

  6. CodeForce 359C Prime Number

    Prime Number CodeForces - 359C Simon has a prime number x and an array of non-negative integers a1,  ...

  7. Codeforces Round #384 (Div. 2) C. Vladik and fractions(构造题)

    传送门 Description Vladik and Chloe decided to determine who of them is better at math. Vladik claimed ...

  8. Codeforces Round #232 (Div. 2) D. On Sum of Fractions

    D. On Sum of Fractions Let's assume that v(n) is the largest prime number, that does not exceed n; u ...

  9. 一天一经典Reducing the Dimensionality of Data with Neural Networks [Science2006]

    别看本文没有几页纸,本着把经典的文多读几遍的想法,把它彩印出来看,没想到效果很好,比在屏幕上看着舒服.若用蓝色的笔圈出重点,这篇文章中几乎要全蓝.字字珠玑. Reducing the Dimensio ...

随机推荐

  1. 调试接口你还在用postman吗

    作者 | 陈凯玲 来源 | my.oschina.net/keking/blog/3104972 接口调试是每个软件开发从业者必不可少的一项技能,一个项目的的完成,可能接口测试调试的时间比真正开发写代 ...

  2. python字典的常用方法

    1.clear()方法: clear() 用于清空字典中所有的 key-value 对,对一个字典执行 clear() 方法之后,该字典就会变成一个空字典. s = {'a': 1, 'b': 2, ...

  3. 2018-2-13-win10-UWP-MessageDialog-和-ContentDialog

    原文:2018-2-13-win10-UWP-MessageDialog-和-ContentDialog title author date CreateTime categories win10 U ...

  4. charAt()检测回文

    package seday01; /** * char charAt(int index) 返回指定位置对应的字符 * @author xingsir */public class CharAtDem ...

  5. css 关于浮动float的使用以及清除浮动

    float:none | left | right 默认值:none 适用于:所有元素 none:设置对象不浮动left:设置对象浮在左边right:设置对象浮在右边 当该属性不等于none引起对象浮 ...

  6. contentOffset、contentSize和contentInset

    1.UIScrollView@property(nonatomic)CGPoint contentOffset;这个属性用来表示UIScrollView滚动的位置 @property(nonatomi ...

  7. iOS10 新特性一

    链接:http://www.jianshu.com/p/0cc7aad638d9 1.Notification(通知) 自从Notification被引入之后,苹果就不断的更新优化,但这些更新优化只是 ...

  8. xcode 左边导航栏中,类文件后面的标记“A”,"M","?"……等符号的含义???

        "M" = Locally modified     "U" = Updated in repository   "A" = Loc ...

  9. 【JavaScript】使用document.write输出覆盖HTML问题

    您只能在 HTML 输出中使用 document.write.如果您在文档加载后使用该方法,会覆盖整个文档. 分析 HTML输出流是指当前数据形式是HTML格式的数据,这部分数据正在被导出.传输或显示 ...

  10. 9.JavaCC官方入门指南-例4

    例4:计算器--添加减法运算 1. calculator1.jj   为了使得计算器具备更多功能,我们需要更多的操作符,比如减法.乘法和除法.接下来我们添加减法运算.   在词法分析器的描述部分,我们 ...