C. Anadi and Domino

题目链接:https://codeforces.com/contest/1230/problem/C

Anadi has a set of dominoes. Every domino has two parts, and each part contains some dots. For every aa and bb such that 1≤a≤b≤61≤a≤b≤6, there is exactly one domino with aa dots on one half and bb dots on the other half. The set contains exactly 2121 dominoes. Here is an exact illustration of his set:

Also, Anadi has an undirected graph without self-loops and multiple edges. He wants to choose some dominoes and place them on the edges of this graph. He can use at most one domino of each type. Each edge can fit at most one domino. It's not necessary to place a domino on each edge of the graph.

When placing a domino on an edge, he also chooses its direction. In other words, one half of any placed domino must be directed toward one of the endpoints of the edge and the other half must be directed toward the other endpoint. There's a catch: if there are multiple halves of dominoes directed toward the same vertex, each of these halves must contain the same number of dots.

How many dominoes at most can Anadi place on the edges of his graph?

Input

The first line contains two integers nn and mm (1≤n≤71≤n≤7, 0≤m≤n⋅(n−1)20≤m≤n⋅(n−1)2) — the number of vertices and the number of edges in the graph.

The next mm lines contain two integers each. Integers in the ii-th line are aiai and bibi (1≤a,b≤n1≤a,b≤n, a≠ba≠b) and denote that there is an edge which connects vertices aiai and bibi.

The graph might be disconnected. It's however guaranteed that the graph doesn't contain any self-loops, and that there is at most one edge between any pair of vertices.

Output

Output one integer which denotes the maximum number of dominoes which Anadi can place on the edges of the graph.

 

Note

Here is an illustration of Anadi's graph from the first sample test:

And here is one of the ways to place a domino on each of its edges:

Note that each vertex is faced by the halves of dominoes with the same number of dots. For instance, all halves directed toward vertex 11have three dots.

题意:每个指向顶点的点数是相同的,且每个骰子不能重复使用,问最多有几条边可以被摆放,其中可以用相同的点数指向不同的顶点

题解:如果顶点数小于等于6的话,肯定每个边都可以摆放。

那只要考虑有七个顶点的情况,肯定有一个点数是被两个顶点共用,如果这两个顶点还连接同一个顶点时,由于每个骰子只能使用一次,这两个边中肯定会有其中一条边被舍弃,所以枚举每两个顶点,有几个指向同一个顶点的就删去几个,找到最少的删除边,把其减去就是答案。

代码:

 #include <iostream>
#include <algorithm>
#include <cstdio>
#include<vector>
#include<string.h>
#include<queue>
#include<map>
#include<math.h>
#include<stdio.h>
#define inf 0x3f3f3f
#define ll long long
using namespace std;
int a[][]={};
int main()
{
int n,m;
cin>>n>>m;
for(int i=;i<=m;i++)
{
int p,q;
cin>>p>>q;
a[p][q]=a[q][p]=;
}int ans=inf,t;
if(n<=)
{
cout<<m<<endl;
return ;
}
else
{
for(int i=;i<;i++)
{
for(int j=i+;j<=;j++)
{
t=;
for(int k=;k<=;k++)
{ if(a[i][k]&&a[j][k])
{
t++;
}
}
ans=min(ans,t);
}
}
cout<<m-ans<<endl;
}
return ;
}

588 div2 C. Anadi and Domino的更多相关文章

  1. C. Anadi and Domino

    题目链接:http://codeforces.com/contest/1230/problem/C C. Anadi and Domino time limit per test: 2 seconds ...

  2. Anadi and Domino

    C - Anadi and Domino 参考:Anadi and Domino 思路:分为两种情况: ①n<=6,这个时候肯定可以保证降所有的边都放上一张多米诺牌,那么答案就是m ②n==7, ...

  3. Codeforces Round #588 (Div. 2) C. Anadi and Domino(思维)

    链接: https://codeforces.com/contest/1230/problem/C 题意: Anadi has a set of dominoes. Every domino has ...

  4. TopCoder SRM 588 DIV2 KeyDungeonDiv2

    简单的题目 class KeyDungeonDiv2 { public: int countDoors(vector <int> doorR, vector <int> doo ...

  5. CF1210A Anadi and Domino

    思路: 很有意思的思维题. 实现: #include <bits/stdc++.h> using namespace std; int check(vector<int>&am ...

  6. cf-1230C Anadi and Domino

    题目链接:http://codeforces.com/contest/1230/problem/C 题意: 有21 个多米诺骨牌,给定一个无向图(无自环,无重边),一条边上可以放一个多米诺骨牌.如果两 ...

  7. Codeforces Round #588 (Div. 2)

    传送门 A. Dawid and Bags of Candies 乱搞. Code #include <bits/stdc++.h> #define MP make_pair #defin ...

  8. codeforces刷题记录

    Codefest 19 (open for everyone, rated, Div. 1 + Div. 2) C. Magic Grid 这种题直接构造 数n是2的n次方的倍数的时候可以这样划分数 ...

  9. Codeforces 238 div2 B. Domino Effect

    题目链接:http://codeforces.com/contest/405/problem/B 解题报告:一排n个的多米诺骨牌,规定,若从一边推的话多米诺骨牌会一直倒,但是如果从两个方向同时往中间推 ...

随机推荐

  1. codeforces 626 G. Raffles(线段树+思维+贪心)

    题目链接:http://codeforces.com/contest/626/problem/G 题解:这题很明显买彩票肯定要买贡献最大的也就是说买p[i]*(num[i]+1)/(num[i]+a[ ...

  2. Erlang模块supervisor翻译

    概要: 通用监督者行为   描述: 一个实现监督者的行为模块,一个监督被称为子进程的其它进程的进程.一个子进程可以是另一个监督者或工作者进程.工作者进程通常的实现使用gen_event,gen_fsm ...

  3. Redis哨兵模式实现集群的高可用

    先了解一下哨兵都 做了什么工作:Redis 的 Sentinel 系统用于管理多个 Redis 服务器(instance), 该系统执行以下三个任务: 监控(Monitoring): Sentinel ...

  4. QRowTable表格控件(四)-效率优化之-优化数据源

    目录 一.开心一刻 二.问题分析 三.重写数据源 1.自己存储数据 2.重写data接口 四.比较 五.相关文章 原文链接:QRowTable表格控件(四)-效率优化之-优化数据源 一.开心一刻 一程 ...

  5. git之坑2

    今天遇到的问题,git拉代码拉不了了,开发同事将他的家目录下的.ssh目录权限给改成777 造成pull push代码报错. 截图如下: 原因是哪个哥们把根目录的权限全部改为了777 解决方法,将他的 ...

  6. lambda表达式与匿名内部类与双冒号(::)

    lambda表达式在只有一条代码时还可以引用其他方法或构造器并自动调用,可以省略参数传递,代码更加简洁,引用方法的语法需要使用::符号.lambda表达式提供了四种引用方法和构造器的方式: 引用对象的 ...

  7. java字符串加密解密

    java字符串加密解密 字符串加密解密的方式很多,每一种加密有着相对的解密方法.下面要说的是java中模拟php的pack和unpack的字符串加密解密方法. java模拟php中pack: /** ...

  8. Mysql使用SSL连接

    最近项目中用到了SSL连接,记录一下,环境为windows10,Mysql版本为5.6 查看是否支持 SSL 首先在 MySQL 上执行如下命令, 查询是否 MySQL 支持 SSL: mysql&g ...

  9. JAVA面试问题与解答(1-15)

    Q1.内部类和子类之间有什么区别? Ans:Inner类是嵌套在另一个类中的类.内类具有嵌套它的类的访问权限,并且它可以访问外部类中定义的所有变量和方法. 子类是从另一个名为super class的类 ...

  10. C#中 CS1752无法嵌入互操作类型"OPCServerClass"。请改用适用的接口。

    使用C#+VS开发OPC程序是,调用Interop.OPCAutomation中的类时,提示无法嵌入互操作类型"OPCServerClass".请改用适用的接口. 首先说一下它的含 ...