先说地球人都看得出来的,该数列所有数都是p的斐波那契数列中所对应的数的次幂,所以一开始都以为是道水题,然而斐波那契数列增长很快,92以后就爆long long ,所以要另谋出路,于是乎向Ren_ivan大犇学了扩展欧拉定理:(a^b)%p=(a^(b%φ(p)))%p不要问我为什么,我也不会证。

  所以这道题就变成简单的数学题了,首先筛出sqpt(1<<31)以内的素数,不必担心复杂度,线筛还是挺快的。然后针对每一个q求出它的欧拉函数,再通过矩阵快速幂求出对应的斐波那契数列,再用快速幂最终处理即可,简单粗暴,唯一的难点就是扩展欧拉定理。

  考试的时候除了扩展欧拉定理都想到了,只能打完快速幂,预处理出斐波那契数列后硬杠,结果当时有点贪心,是否直接使用斐波那契数列的边界开的大了点,爆了long long ,丢了2个点的分,又一次身败名裂……

  (本代码函数名都为拼音+英文,见笑了)。

 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cmath>
using namespace std;
long long m,p,zz,n;
long long ol[<<];
bool fss[<<];
long long ss[<<];
void olhs(){
ol[]=;
for(long long i=;i<=n;i++)
{
if(!fss[i])
{
zz++;
ss[zz]=i;
ol[i]=i-;
}
for(long long j=;j<=zz;j++)
{
long long x=i*ss[j];
if(x>n)break;
fss[x]=;
if(i%ss[j]==)
{
ol[x]=ol[i]*ss[j];
break;
}
else
ol[x]=ol[i]*(ss[j]-);
}
}
}
long long ksm(long long x,long long y,long long z){
long long ans=;
long long yy=y;
if(!x)
return %z;
while(x)
{
if((x&)) ans=(ans*yy)%z;
yy=(yy*yy)%z;
x/=;
}
return ans;
}
long long getol(long long x){
long long sum=x;
for(int i=;(long long)((long long)ss[i]*(long long)ss[i])<=x;i++)
if(!(x%(long long)ss[i])){
sum=sum-sum/(long long)ss[i];
while(!(x%ss[i]))x/=(long long)ss[i];
}
if(x>)sum=sum-sum/x;
return sum;
}
long long mo;
struct no{
long long x[][];
no operator *(const no &a)
{
no ans;
ans.x[][]=ans.x[][]=ans.x[][]=ans.x[][]=;
for(long long i=;i<=;i++)
{
for(long long j=;j<=;j++)
{
for(long long k=;k<=;k++)
{
ans.x[i][j]+=x[i][k]*a.x[k][j];
}
ans.x[i][j]%=mo;
}
}
return ans;
}
};
long long getfb(long long x){
no a;
if(x==-||x==)return ;
a.x[][]=a.x[][]=a.x[][]=;
a.x[][]=;
no ans;
ans.x[][]=ans.x[][]=;
ans.x[][]=ans.x[][]=;
while(x)
{
if(x&)
{
ans=ans*a;
}
a=a*a;
x=x>>;
} return ans.x[][]+ans.x[][];
}
long long work(long long x,long long y){
mo=getol(y);
long long xx=getfb(x-);
return ksm(xx,p,y);
}
int main(){
long long xx=(<<)-;
n=sqrt(xx);
olhs();
scanf("%lld%lld",&m,&p);
while(m--)
{
long long x,y;
scanf("%lld%lld",&x,&y);
printf("%lld\n",work(x,y));
}
//while(1);
return ;
}

7.30考试password的更多相关文章

  1. 2019.3.28&2019.3.30考试

    2019.3.28 : 肥肠爆芡,因为这场考试的题太屑了,所以我咕咕了 Upd on 2019.3.30 压进来一篇(因为都没啥意义) 2019.3.30 : 全机房读错题+没有大样例=T2全体爆炸 ...

  2. NOIP模(ka)拟(chang)测试30 考试报告

    应得分:300 实得分:210 毒瘤卡常出题人,卡掉90分! T1 Return 开个副本数组sort一下,unique去重就可以啦.时间复杂度$ O(nlog2(n)) $ T2 One 其实就是约 ...

  3. NOIP2015斗地主题解 7.30考试

    问题 B: NOIP2015 斗地主 时间限制: 3 Sec  内存限制: 1024 MB 题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共 ...

  4. 皓远的第二次博客作业(最新pta集,链表练习及期中考试总结)

    前言: 知识点运用:正则表达式,有关图形设计计算的表达式和算法,链表的相关知识,Java类的基础运用,继承.容器与多态. 题量:相较于上次作业,这几周在java方面的练习花了更多的精力和时间,所要完成 ...

  5. 阿里云 ACP 考试学习过程分享

    目录 考证意义 学习方法 ACP 报名 学习安排[重要] 考试当天 其他 经验贴 考证意义 证多不压身,证比项目经历更具有说服力,证是行业的标准认证.更多时候,是有证的人说,"证其实不重要& ...

  6. OCM_第一天课程:OCM课程环境搭建

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  7. Linux - expect自动化远程登录脚本

    简单模式: #!/usr/bin/expect -f spawn ssh root@192.168.0.1 expect "*assword*" send "root\r ...

  8. 【Python】用户登录三次锁定

    这是从另外一个博客考过了的,借鉴一下,怕下次找不到1 # -*- coding:utf-8 -*- 2 3 #登录三次锁定用户 4 5 #用于计数(循环三次的判断) 6 count = 0 7 8 # ...

  9. PHP基础之POST与GET

    post 与 get区别 *.Post传输数据时,不需要在URL中显示出来,而Get方法要在URL中显示.*.Post传输的数据量大,可以达到2M,而Get方法由于受到URL长度的限制,只能传递大约1 ...

随机推荐

  1. 详解 Java 8 HashMap 实现原理

    HashMap 是 Java 开发过程中常用的工具类之一,也是面试过程中常问的内容,此篇文件通过作者自己的理解和网上众多资料对其进行一个解析.作者本地的 JDK 版本为 64 位的 1.8.0_171 ...

  2. HTML5离线缓存攻击测试(二)

    经过昨天的测试,发现使用离线缓存的网站会被攻击.但是,不使用离线缓存的网站就真的不会受到这样的攻击么? 据我理解,按照标准当浏览器请求manifest文件时,若没有请求到,或者文件发生改变,应当不使用 ...

  3. Qt Widget 利用 Qt4.5 实现酷炫透明窗体

    本文讲述的是Qt Widget 利用 Qt4.5 实现酷炫透明窗体,QWidget类中的每一个窗口部件都是矩形,并且它们按Z轴顺序排列的.一个窗口部件可以被它的父窗口部件或者它前面的窗口部件盖住一部分 ...

  4. HTTP RFC7230

    https://tools.ietf.org/html/rfc7230 https://tools.ietf.org/html/rfc7231#section-4

  5. hMailServer搭建简单邮件系统

    本文介绍的是搭建本地的邮件系统,至于互联网的还在研究之中. 1.需要一个邮件服务器软件,这里用的是hMailServer,其中会让你设置一个密码,记住这个密码,后面连接的时候回用到. 2.添加域名 因 ...

  6. AStyle 2.02版本 AStyle(全称Artistic Style)是一个C、C++、C#和Java源代码缩进、格式化和美化工具

    http://download.csdn.net/detail/akof1314/3323725

  7. 深入windows的关机消息截获-从XP到Win7的变化(在XP中程序可以阻止关机,但是在Win7中程序无法阻止关机,可Block的时间从1秒调到了5秒) good

    之前写了一个软件用于实验室的打卡提醒,其中一个重要的功能是在关机之前提醒当天晚上是否已经打卡.之前我是在WM_ENDSESSION中弹出一个模态对话框来提醒,在XP中基本工作正常,在Win7中大多数时 ...

  8. J2EE--Struts2基础开发

    内容中包含 base64string 图片造成字符过多,拒绝显示

  9. Linux上vim的使用

    .........以下是我在使用vim时的操作经验........... (首先要了解vim主要是命令模式,输入模式,可视化模式,主要区别就是在不同模式下可以完成不同的操作,只是个编辑器,没有必要太纠 ...

  10. javaWeb 概念介绍

    一.javaWeb 1.概念:利用java语言进行基于互联网的开发 2.软件架构 (1)C/S   Client/Server  客户端/服务器端 在用户本地有一个客户端程序,在远程有一个服务器程序 ...