Is that a kind of fetishism?

No, he is objectively a god.

见识了一把 Mcdic 究竟出题有多神。

(虽然感觉还是吹过头了)

开了场 Virtual 玩。

开场先秒了 AB。C 居然差点没做出来,有点耻辱。

开 D。怎么不会……Div. 2 的 D 都能卡住我,我心态崩了。

调到 E。 woc 这不是 sb 题吗……

回来肝 D。想了想口胡出来了,然而心态已经崩了,用了很长很长时间才打出来。

最后只剩 20min 时开 F。这……辣鸡三合一?不管了。


A

暴力模拟即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int l,r,cnt[10];
bool check(int x){
while(x) cnt[x%10]++,x/=10;
bool ans=true;
FOR(i,0,9) if(cnt[i]>=2) ans=false;
FOR(i,0,9) cnt[i]=0;
return ans;
}
int main(){
l=read();r=read();
FOR(i,l,r) if(check(i)) return printf("%d\n",i),0;
puts("-1");
}

B

发现第 \(i\) 行最左边 \(\min(a_i+1,m)\) 列是已经确定要填什么的,第 \(i\) 列最上面 \(\min(b_i+1,n)\) 行是已经确定要填什么的。剩下的任意。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=1111,mod=1000000007;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,m,ans=1,mat[maxn][maxn];
int main(){
n=read();m=read();
FOR(i,1,n) FOR(j,1,m) mat[i][j]=-1;
FOR(i,1,n){
int x=read();
FOR(j,1,x){
if(mat[i][j]==0) return puts("0"),0;
mat[i][j]=1;
}
if(x!=m){
if(mat[i][x+1]==1) return puts("0"),0;
mat[i][x+1]=0;
}
}
FOR(j,1,m){
int x=read();
FOR(i,1,x){
if(mat[i][j]==0) return puts("0"),0;
mat[i][j]=1;
}
if(x!=n){
if(mat[x+1][j]==1) return puts("0"),0;
mat[x+1][j]=0;
}
}
// FOR(i,1,n){
// FOR(j,1,m) printf("%d ",mat[i][j]);
// puts("");
// }
FOR(i,1,n) FOR(j,1,m) if(mat[i][j]==-1) ans=2ll*ans%mod;
printf("%d\n",ans);
}

C

考虑每个质因数的贡献,做完了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010,mod=1000000007;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int x,num[maxn],len,ans=1;
ll n;
int calc(int x){
int ans=0;
ll pr=x;
while(true){
ans=(ans+n/pr)%(mod-1);
ll pre=pr;
pr*=x;
if(pr/pre!=x || pr>n) break;
}
return ans;
}
int qpow(int a,int b){
int ans=1;
for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) ans=1ll*ans*a%mod;
return ans;
}
int main(){
x=read();n=read();
for(int i=2;i*i<=x;i++) if(x%i==0){
num[++len]=i;
while(x%i==0) x/=i;
}
if(x>1) num[++len]=x;
FOR(i,1,len){
int x=num[i];
ans=1ll*ans*qpow(x,calc(x))%mod;
}
printf("%d\n",ans);
}

D

说实话,挺神仙的。

图不连通时,明显无解。

从点集 1,点集 2,点集 3 中分别任选一个点,肯定两两有连边。

不妨先在图中随便找到一个三元环,上面的三个点肯定是一个点集 1,一个点集 2,一个点集 3,顺序无关。如果没有三元环,无解。

对于剩下的每个点 \(u\),如果 \(u\) 和这三点其中某个点没有连边,说明它们肯定在一个点集中。如果和这三个点中多个点都没有连边,无解。

最后 check 一波。

时间复杂度 \(O(n)\)

upd:看了洛谷上一些人的题解,根本不用找三元环,直接钦定一个点在点集 1,与这个点不是一个点集的某个点是 2。应该会好写很多。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=600060;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,m,el,head[maxn],to[maxn],nxt[maxn],u_fa[maxn],dep[maxn],fa[maxn],ans[maxn],q[maxn],h,r,cnt=0;
bool flag,nnn[4],vis[maxn],use[maxn];
inline void add(int u,int v){
to[++el]=v;nxt[el]=head[u];head[u]=el;
}
int getfa(int x){
return x==u_fa[x]?x:u_fa[x]=getfa(u_fa[x]);
}
void dfs(int u,int f){
dep[u]=dep[f]+1;fa[u]=f;
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(v==f) continue;
if(dep[v]){
if(fa[fa[u]]==v && !flag){
ans[u]=1;ans[fa[u]]=2;ans[fa[fa[u]]]=3;
flag=true;
}
}
else dfs(v,u);
}
}
void dfs2(int u,int f,int x,int y){
vis[u]=true;
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(v==f || (ans[v]!=x && ans[v]!=y)) continue;
if(!use[(i+1)/2]) cnt++,use[(i+1)/2]=true;
if(!vis[v]) dfs2(v,u,x,y);
}
}
bool check(int x,int y){
MEM(vis,0);
int cnt1=0,cnt2=0;
FOR(i,1,n){
if(ans[i]==x) cnt1++;
if(ans[i]==y) cnt2++;
}
cnt=0;
FOR(i,1,n) if(ans[i]==x){dfs2(i,0,x,y);break;}
return 1ll*cnt1*cnt2==cnt;
}
int main(){
n=read();m=read();
FOR(i,1,n) u_fa[i]=i;
FOR(i,1,m){
int u=read(),v=read();
add(u,v);add(v,u);
u=getfa(u);v=getfa(v);
u_fa[u]=v;
}
FOR(i,1,n) if(getfa(i)!=getfa(1)) return puts("-1"),0;
dfs(1,0);
if(!flag) return puts("-1"),0;
FOR(u,1,n){
if(ans[u]) continue;
nnn[1]=nnn[2]=nnn[3]=false;
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(ans[v]) nnn[ans[v]]=true;
}
FOR(i,1,3) if(!nnn[i]){
if(ans[u]) return puts("-1"),0;
ans[u]=i;
}
if(!ans[u]) return puts("-1"),0;
}
if(!check(1,2) || !check(1,3) || !check(2,3)) return puts("-1"),0;
FOR(i,1,n) printf("%d ",ans[i]);
}

E

简单二项式反演。

先特判 \(k=1\)。下文假设 \(k\ge 2\)。

设 \(f_{i,j}\) 是恰好 \(i\) 行不满足要求,恰好 \(j\) 列不满足要求的方案数。要求是 \(f_{0,0}\)。

设 \(g_{i,j}\) 是对于所有方案中,选出 \(i\) 行不满足要求,\(j\) 列不满足要求的方案数之和。很明显有 \(g_{i,j}=\binom{n}{i}\binom{n}{j}(k-1)^{n^2-(n-i)(n-j)}k^{(n-i)(n-j)}\)。

根据定义,\(g_{i,j}=\sum\limits_{x=i}^n\sum\limits_{y=j}^n\binom{x}{i}\binom{y}{j}f_{x,y}\)。

二项式反演,\(f_{i,j}=\sum\limits_{x=i}^n\sum\limits_{y=j}^n\binom{x}{i}\binom{y}{j}(-1)^{(x-i)+(y-j)}g_{x,y}\)。

时间复杂度 \(O(n^2\log n)\)。可以进一步优化,但是没必要了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010,mod=1000000007;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,k,ans,fac[maxn],invfac[maxn];
int qpow(int a,ll b){
int ans=1;
for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) ans=1ll*ans*a%mod;
return ans;
}
int C(int n,int m){
return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
int main(){
n=read();k=read();
if(k==1) return puts("1"),0;
fac[0]=1;
FOR(i,1,n) fac[i]=1ll*fac[i-1]*i%mod;
invfac[n]=qpow(fac[n],mod-2);
ROF(i,n-1,0) invfac[i]=1ll*invfac[i+1]*(i+1)%mod;
FOR(i,0,n) FOR(j,0,n){
int sum=1ll*C(n,i)*C(n,j)%mod*qpow(k-1,1ll*n*n-1ll*(n-i)*(n-j))%mod*qpow(k,1ll*(n-i)*(n-j))%mod;
// printf("i=%d,j=%d,sum=%d\n",i,j,sum);
if((i+j)%2==0) ans=(ans+sum)%mod;
else ans=(ans-sum+mod)%mod;
}
printf("%d\n",ans);
}

F

在路上了。

Codeforces Round 589 (Div. 2) 题解的更多相关文章

  1. Codeforces Round #182 (Div. 1)题解【ABCD】

    Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...

  2. Codeforces Round #608 (Div. 2) 题解

    目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...

  3. Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理

    Codeforces Round #589 (Div. 2)-E. Another Filling the Grid-容斥定理 [Problem Description] 在\(n\times n\) ...

  4. Codeforces Round #525 (Div. 2)题解

    Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...

  5. Codeforces Round #528 (Div. 2)题解

    Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...

  6. Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F

    Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...

  7. Codeforces Round #677 (Div. 3) 题解

    Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...

  8. Codeforces Round #665 (Div. 2) 题解

    Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...

  9. Codeforces Round #160 (Div. 1) 题解【ABCD】

    Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...

随机推荐

  1. C#开发BIMFACE系列28 服务端API之获取模型数据13:获取三维视点或二维视图列表

    系列目录     [已更新最新开发文章,点击查看详细] 本篇主要介绍如何获取一个模型中包含的三维视点或二维视图列表. 请求地址:GET https://api.bimface.com/data/v2/ ...

  2. Java开发笔记汇总

    Java语法与.Net对比 Java规范与约定 Kotlin Maven笔记 SpringBoot笔记2 SpringCloud笔记 MyBatis笔记 发布Jar包到中央仓库

  3. Mybatis关联查询之二

    Mybatis关联查询之多对多 多对多 一.entity实体类 public class Student { private Integer stuid; private String stuname ...

  4. 成为杰出Java开发人员的10个步骤

    在优锐课的学习分享中,讨论了如果你是Java开发人员并且对技术充满热情,则可以按照以下十个步骤进行操作,这可以使你成为杰出的Java开发人员. 1.具有扎实的基础和对OO原理的理解 对于Java开发人 ...

  5. python接口自动化10-excel设计模式实战

    前言 一.简介 1.环境准备:python+requests+excel+unittest+ddt,主要安装以下环境,其它一般都有了,没有自行安装: pip install xlrd pip inst ...

  6. dotnetcore实现Aop

    dotnetcore实现Aop Aop大家都不陌生,然而今天给大家不将讲官方的filter,今天给大家分享一个轻量级的Aop解决方案(AspectCore) 什么是AspectCore AspectC ...

  7. Jenkins操作学习 -- 配置及使用

    一.jenkins基本配置 1.在Jenkins首页,点击Manage Jenkins,然后再点击Manage Plugins插件管理,安装必要的插件.这里我只需要安装Git,因为第一次初始化安装没成 ...

  8. element UI 调整表格行高

    使用element UI的table默认属性,绘制表格如下: 该表格的行高太大了,于是想调小一些. 查看官网的文档,table有几个属性, row-style:行的 style 的回调方法,也可以使用 ...

  9. Python Turtle绘画初学编程——六芒星,浪形圈

    老师上课说可以自学一下python中的绘图turtle,就自己初步学习了一下,做了两个简单的绘图——六芒星和浪形圈(其实我也不知道该叫它什么,就照样子编了个词

  10. frigate_TUNNEL

    #coding=utf-8 Result=open('result.txt',"w") FileTunnel = open('tunnel.txt').readlines() Ne ...