洛谷 P1219八皇后
把全部,在这251秒,赌上! ——《游戏人生zero》
题目:https://www.luogu.org/problem/P1219
八皇后是一道非常非常非常经典的深搜+回溯的题目。
这道题重要的是思路要正确。我们自然没办法定义一个二维数组然后循环判断有没有——这样肯定会炸掉。
那么用什么方法呢?
标记。
把每一列,对角线的值都指向行标,以判断这里可不可以下。
例如这个,第2列指向的行标是1,第2-1+6号斜向右下的对角线的行标也是1,第2+1号斜向左下的对角线的行标还是1。
那么我们就能得到这样的代码。
a[i]=t;
b[i-t+n]=t;
c[i+t]=t;
最后把这个放深搜里面,再加上回溯,就能AC了。
#include<iostream>
#include<map>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n,ans=;
int d[],num=;
//map<int,int>a,b,c;
int a[],b[],c[];
void output()
{
for(int i=;i<=n;i++)
printf("%d ",d[i]);
printf("\n");
}
void dfs(int t)
{
for(int i=;i<=n;i++)
{
if(!a[i]&&!b[i-t+n]&&!c[t+i])
{
a[i]=t;
// b[i-t]=t;//因为用了map所以就可以不用管是正还是负
b[i-t+n]=t;
c[i+t]=t;
d[t]=i;
if(t==n)
{
if(++num<=) output();
ans++;
}
else dfs(t+);
a[i]=;
// b[i-t]=0;
b[i-t+n]=;
c[t+i]=;
d[t]=;
}
}
}
int main()
{
scanf("%d",&n);
dfs();
printf("%d\n",ans);
return ;
}
另外因为对角线的表示方法很清奇,所以可以看看可不可以map,但因为一些玄学原因,map的时间复杂度更高,会TLE掉两个点,因此加上特判,完成。
#include<iostream>
#include<map>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n,ans=;
int d[],num=;
map<int,int>a,b,c;
void output()//输出
{
for(int i=;i<=n;i++)
printf("%d ",d[i]);
printf("\n");
}
void dfs(int t)
{
for(int i=;i<=n;i++)
{
if(!a[i]&&!b[i-t]&&!c[t+i])
{
a[i]=t;
b[i-t]=t;//因为用了map所以就可以不用管是正还是负
c[i+t]=t;
d[t]=i;//简单的标记
if(t==n)
{
if(++num<=) output();
ans++;
}
else dfs(t+);
a[i]=;
b[i-t]=;
c[t+i]=;
d[t]=;//回溯
}
}
}
int main()
{
scanf("%d",&n);
if(n==)
{
printf("1 3 5 8 10 12 6 11 2 7 9 4\n");
printf("1 3 5 10 8 11 2 12 6 9 7 4\n");
printf("1 3 5 10 8 11 2 12 7 9 4 6\n14200");
return ;
}
if(n==)
{
printf("1 3 5 2 9 12 10 13 4 6 8 11 7\n");
printf("1 3 5 7 9 11 13 2 4 6 8 10 12\n");
printf("1 3 5 7 12 10 13 6 4 2 8 11 9\n73712");
return ;
}
dfs();
printf("%d\n",ans);
return ;
}
洛谷 P1219八皇后的更多相关文章
- 洛谷 P1219 八皇后【经典DFS,温习搜索】
P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...
- 洛谷 p1219 八皇后
刚参加完蓝桥杯 弱鸡错了好几道..回头一看确实不难 写起来还是挺慢的 于是开始了刷题的道路 蓝桥杯又名搜索杯 暴力杯...于是先从dfs刷起 八皇后是很经典的dfs问题 洛谷的这道题是这样的 上面的布 ...
- 【洛谷P1219 八皇后】
参考思路见白书(一本通) 题目链接 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上 ...
- 洛谷P1219 八皇后【dfs】
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 洛谷 P1219 八皇后题解
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 洛谷P1219 八皇后
题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序列2 4 6 1 3 ...
- 洛谷 - P1219 - 八皇后 - dfs
https://www.luogu.org/problemnew/show/P1219 一开始朴素检查对角线就TLE了,给对角线编码之后压缩了13倍时间? 找了很久的bug居然是&&写 ...
- 洛谷P1219 八皇后 我。。。。。。
代码1 (学弟版) #include<bits/stdc++.h>using namespace std;int l[15];bool s[15]; ...
- 洛谷P2105 K皇后
To 洛谷.2105 K皇后 题目描述 小Z最近捡到了一个棋盘,他想在棋盘上摆放K个皇后.他想知道在他摆完这K个皇后之后,棋盘上还有多少了格子是不会被攻击到的. (Ps:一个皇后会攻击到这个皇后所在的 ...
随机推荐
- WebGL简易教程(二):向着色器传输数据
目录 1. 概述 2. 示例:绘制一个点(改进版) 1) attribute变量 2) uniform变量 3) varying变量 3. 结果 4. 参考 1. 概述 在上一篇教程<WebGL ...
- Unity工程无代码化
目的 Unity默认是将代码放入工程,这样容易带来一些问题.1. 代码和资源混合,职能之间容易互相误改.2. 当代码量膨胀到一定程度后,代码的编译时间长到无法忍受.新版的unity支持通过asmde ...
- python 列表的增删改查
列表 有序可变的,索引 作用:存储数据的,支持很多种数据类型 定义方式: lst = [1,"alex",True,('a','b')]增 append() # 追加 extend ...
- (十七)c#Winform自定义控件-基类窗体
前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...
- 最小生成树模板题-----P3366 【模板】最小生成树
题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入格式 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<=200000) ...
- warpAffine仿射变换
仿射变换,其实就是不同的坐标系的相互转换,用于图像的平移和旋转. 首先看一下官方的api描述. https://docs.opencv.org/2.4/modules/imgproc/doc/geom ...
- Kafka 0.8 Producer (0.9以前版本适用)
Kafka旧版本producer由scala编写,0.9以后已经废除,但是很多公司还在使用0.9以前的版本,所以总结如下: 要注意包Producer是 kafka.javaapi.producer.P ...
- idea实现第一个springboot程序
1.环境准备 JDK:1.8 Apache Maven: 3.6.1 IntelliJ IDEA 2019.1.3 x64 SpringBoot 1.5.9.RELEASE:1.5.9: 1.1.MA ...
- Spring中jdbcTemplate的用法实例
一.首先配置JdbcTemplate: 要使用Jdbctemplate 对象来完成jdbc 操作.通常情况下,有三种种方式得到JdbcTemplate 对象. 第一种方式:我们可以在自己定 ...
- 剑指Offer(十九):顺时针打印矩阵
剑指Offer(十九):顺时针打印矩阵 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net/baid ...