Storm 学习之路(八)—— Storm集成HDFS和HBase
一、Storm集成HDFS
1.1 项目结构
本用例源码下载地址:storm-hdfs-integration
1.2 项目主要依赖
项目主要依赖如下,有两个地方需要注意:
- 这里由于我服务器上安装的是CDH版本的Hadoop,在导入依赖时引入的也是CDH版本的依赖,需要使用
<repository>
标签指定CDH的仓库地址; hadoop-common
、hadoop-client
、hadoop-hdfs
均需要排除slf4j-log4j12
依赖,原因是storm-core
中已经有该依赖,不排除的话有JAR包冲突的风险;
<properties>
<storm.version>1.2.2</storm.version>
</properties>
<repositories>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>${storm.version}</version>
</dependency>
<!--Storm整合HDFS依赖-->
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-hdfs</artifactId>
<version>${storm.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.0-cdh5.15.2</version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.0-cdh5.15.2</version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.6.0-cdh5.15.2</version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
1.3 DataSourceSpout
/**
* 产生词频样本的数据源
*/
public class DataSourceSpout extends BaseRichSpout {
private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");
private SpoutOutputCollector spoutOutputCollector;
@Override
public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
this.spoutOutputCollector = spoutOutputCollector;
}
@Override
public void nextTuple() {
// 模拟产生数据
String lineData = productData();
spoutOutputCollector.emit(new Values(lineData));
Utils.sleep(1000);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("line"));
}
/**
* 模拟数据
*/
private String productData() {
Collections.shuffle(list);
Random random = new Random();
int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
return StringUtils.join(list.toArray(), "\t", 0, endIndex);
}
}
产生的模拟数据格式如下:
Spark HBase
Hive Flink Storm Hadoop HBase Spark
Flink
HBase Storm
HBase Hadoop Hive Flink
HBase Flink Hive Storm
Hive Flink Hadoop
HBase Hive
Hadoop Spark HBase Storm
1.4 将数据存储到HDFS
这里HDFS的地址和数据存储路径均使用了硬编码,在实际开发中可以通过外部传参指定,这样程序更为灵活。
public class DataToHdfsApp {
private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
private static final String HDFS_BOLT = "hdfsBolt";
public static void main(String[] args) {
// 指定Hadoop的用户名 如果不指定,则在HDFS创建目录时候有可能抛出无权限的异常(RemoteException: Permission denied)
System.setProperty("HADOOP_USER_NAME", "root");
// 定义输出字段(Field)之间的分隔符
RecordFormat format = new DelimitedRecordFormat()
.withFieldDelimiter("|");
// 同步策略: 每100个tuples之后就会把数据从缓存刷新到HDFS中
SyncPolicy syncPolicy = new CountSyncPolicy(100);
// 文件策略: 每个文件大小上限1M,超过限定时,创建新文件并继续写入
FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(1.0f, Units.MB);
// 定义存储路径
FileNameFormat fileNameFormat = new DefaultFileNameFormat()
.withPath("/storm-hdfs/");
// 定义HdfsBolt
HdfsBolt hdfsBolt = new HdfsBolt()
.withFsUrl("hdfs://hadoop001:8020")
.withFileNameFormat(fileNameFormat)
.withRecordFormat(format)
.withRotationPolicy(rotationPolicy)
.withSyncPolicy(syncPolicy);
// 构建Topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout());
// save to HDFS
builder.setBolt(HDFS_BOLT, hdfsBolt, 1).shuffleGrouping(DATA_SOURCE_SPOUT);
// 如果外部传参cluster则代表线上环境启动,否则代表本地启动
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterDataToHdfsApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalDataToHdfsApp",
new Config(), builder.createTopology());
}
}
}
1.5 启动测试
可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用maven-shade-plugin
进行打包,打包命令如下:
# mvn clean package -D maven.test.skip=true
运行后,数据会存储到HDFS的/storm-hdfs
目录下。使用以下命令可以查看目录内容:
# 查看目录内容
hadoop fs -ls /storm-hdfs
# 监听文内容变化
hadoop fs -tail -f /strom-hdfs/文件名
二、Storm集成HBase
2.1 项目结构
集成用例: 进行词频统计并将最后的结果存储到HBase,项目主要结构如下:
本用例源码下载地址:storm-hbase-integration
2.2 项目主要依赖
<properties>
<storm.version>1.2.2</storm.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>${storm.version}</version>
</dependency>
<!--Storm整合HBase依赖-->
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-hbase</artifactId>
<version>${storm.version}</version>
</dependency>
</dependencies>
2.3 DataSourceSpout
/**
* 产生词频样本的数据源
*/
public class DataSourceSpout extends BaseRichSpout {
private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");
private SpoutOutputCollector spoutOutputCollector;
@Override
public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
this.spoutOutputCollector = spoutOutputCollector;
}
@Override
public void nextTuple() {
// 模拟产生数据
String lineData = productData();
spoutOutputCollector.emit(new Values(lineData));
Utils.sleep(1000);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("line"));
}
/**
* 模拟数据
*/
private String productData() {
Collections.shuffle(list);
Random random = new Random();
int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
return StringUtils.join(list.toArray(), "\t", 0, endIndex);
}
}
产生的模拟数据格式如下:
Spark HBase
Hive Flink Storm Hadoop HBase Spark
Flink
HBase Storm
HBase Hadoop Hive Flink
HBase Flink Hive Storm
Hive Flink Hadoop
HBase Hive
Hadoop Spark HBase Storm
2.4 SplitBolt
/**
* 将每行数据按照指定分隔符进行拆分
*/
public class SplitBolt extends BaseRichBolt {
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}
@Override
public void execute(Tuple input) {
String line = input.getStringByField("line");
String[] words = line.split("\t");
for (String word : words) {
collector.emit(tuple(word, 1));
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
2.5 CountBolt
/**
* 进行词频统计
*/
public class CountBolt extends BaseRichBolt {
private Map<String, Integer> counts = new HashMap<>();
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector=collector;
}
@Override
public void execute(Tuple input) {
String word = input.getStringByField("word");
Integer count = counts.get(word);
if (count == null) {
count = 0;
}
count++;
counts.put(word, count);
// 输出
collector.emit(new Values(word, String.valueOf(count)));
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
2.6 WordCountToHBaseApp
/**
* 进行词频统计 并将统计结果存储到HBase中
*/
public class WordCountToHBaseApp {
private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
private static final String SPLIT_BOLT = "splitBolt";
private static final String COUNT_BOLT = "countBolt";
private static final String HBASE_BOLT = "hbaseBolt";
public static void main(String[] args) {
// storm的配置
Config config = new Config();
// HBase的配置
Map<String, Object> hbConf = new HashMap<>();
hbConf.put("hbase.rootdir", "hdfs://hadoop001:8020/hbase");
hbConf.put("hbase.zookeeper.quorum", "hadoop001:2181");
// 将HBase的配置传入Storm的配置中
config.put("hbase.conf", hbConf);
// 定义流数据与HBase中数据的映射
SimpleHBaseMapper mapper = new SimpleHBaseMapper()
.withRowKeyField("word")
.withColumnFields(new Fields("word","count"))
.withColumnFamily("info");
/*
* 给HBaseBolt传入表名、数据映射关系、和HBase的配置信息
* 表需要预先创建: create 'WordCount','info'
*/
HBaseBolt hbase = new HBaseBolt("WordCount", mapper)
.withConfigKey("hbase.conf");
// 构建Topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout(),1);
// split
builder.setBolt(SPLIT_BOLT, new SplitBolt(), 1).shuffleGrouping(DATA_SOURCE_SPOUT);
// count
builder.setBolt(COUNT_BOLT, new CountBolt(),1).shuffleGrouping(SPLIT_BOLT);
// save to HBase
builder.setBolt(HBASE_BOLT, hbase, 1).shuffleGrouping(COUNT_BOLT);
// 如果外部传参cluster则代表线上环境启动,否则代表本地启动
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterWordCountToRedisApp", config, builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalWordCountToRedisApp",
config, builder.createTopology());
}
}
}
2.7 启动测试
可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用maven-shade-plugin
进行打包,打包命令如下:
# mvn clean package -D maven.test.skip=true
运行后,数据会存储到HBase的WordCount
表中。使用以下命令查看表的内容:
hbase > scan 'WordCount'
2.8 withCounterFields
在上面的用例中我们是手动编码来实现词频统计,并将最后的结果存储到HBase中。其实也可以在构建SimpleHBaseMapper
的时候通过withCounterFields
指定count字段,被指定的字段会自动进行累加操作,这样也可以实现词频统计。需要注意的是withCounterFields指定的字段必须是Long类型,不能是String类型。
SimpleHBaseMapper mapper = new SimpleHBaseMapper()
.withRowKeyField("word")
.withColumnFields(new Fields("word"))
.withCounterFields(new Fields("count"))
.withColumnFamily("cf");
参考资料
更多大数据系列文章可以参见个人 GitHub 开源项目: 程序员大数据入门指南
Storm 学习之路(八)—— Storm集成HDFS和HBase的更多相关文章
- springboot 学习之路 3( 集成mybatis )
目录:[持续更新.....] spring 部分常用注解 spring boot 学习之路1(简单入门) spring boot 学习之路2(注解介绍) spring boot 学习之路3( 集成my ...
- springboot 学习之路 6(集成durid连接池)
目录:[持续更新.....] spring 部分常用注解 spring boot 学习之路1(简单入门) spring boot 学习之路2(注解介绍) spring boot 学习之路3( 集成my ...
- Storm 系列(八)—— Storm 集成 HDFS 和 HBase
一.Storm集成HDFS 1.1 项目结构 本用例源码下载地址:storm-hdfs-integration 1.2 项目主要依赖 项目主要依赖如下,有两个地方需要注意: 这里由于我服务器上安装的是 ...
- Storm 学习之路(七)—— Storm集成 Redis 详解
一.简介 Storm-Redis提供了Storm与Redis的集成支持,你只需要引入对应的依赖即可使用: <dependency> <groupId>org.apache.st ...
- Storm 学习之路(九)—— Storm集成Kafka
一.整合说明 Storm官方对Kafka的整合分为两个版本,官方说明文档分别如下: Storm Kafka Integration : 主要是针对0.8.x版本的Kafka提供整合支持: Storm ...
- Storm 学习之路(六)—— Storm项目三种打包方式对比分析
一.简介 在将Storm Topology提交到服务器集群运行时,需要先将项目进行打包.本文主要对比分析各种打包方式,并将打包过程中需要注意的事项进行说明.主要打包方式有以下三种: 第一种:不加任何插 ...
- Storm 学习之路(五)—— Storm编程模型详解
一.简介 下图为Strom的运行流程图,在开发Storm流处理程序时,我们需要采用内置或自定义实现spout(数据源)和bolt(处理单元),并通过TopologyBuilder将它们之间进行关联,形 ...
- Storm 学习之路(二)—— Storm核心概念详解
一.Storm核心概念 1.1 Topologies(拓扑) 一个完整的Storm流处理程序被称为Storm topology(拓扑).它是一个是由Spouts 和Bolts通过Stream连接起来的 ...
- Storm 学习之路(一)—— Storm和流处理简介
一.Storm 1.1 简介 Storm 是一个开源的分布式实时计算框架,可以以简单.可靠的方式进行大数据流的处理.通常用于实时分析,在线机器学习.持续计算.分布式RPC.ETL等场景.Storm具有 ...
随机推荐
- android Bluetooth程序设计
Bluetooth一个简短的引论 蓝牙,是一种短距离通信配套设备(一般10m中)无线技术. 包含移动电话.PDA.无线耳机.笔记本电脑.相关外设等众多设备之间进行无线信息交换.利用"蓝牙&q ...
- hadoop2.4.1的ftpserver建立
对于公司框架hadoop+hive,hive通过建立外部表(EXTERNAL TABLE)可以直接识别hdfs档,直接那假说本地文件hdfs文件系统.hive. 这期间须要一个ftp软件,能够沟通本地 ...
- Matlab Tricks(二十五) —— 二维图像的 shuffle
比如对于 mnist (手写字符图像),每幅图像的像素点为 28*28,所以有: perm = randperm(28*28); % 重排列 mnist.train_images = reshape( ...
- Android在putString和getString使用方法
函数: putString(String key,String value); 功能:将键为key的值为value. 详细的容器详细考虑比如对于Editor 的对象来讲: 代码例如以下: 首先新建一个 ...
- 3DMax模型输入到WPF中运行
原文:3DMax模型输入到WPF中运行 其实看看笔者文章之前,可以在网上搜索下将3Dmax模型输入到WPF的办法,大部分结果都是这篇文章.这篇文章呢?有点麻烦,就是我们3Dmax模型转换到Blend的 ...
- 形态学-扩大-C代码
直接在代码,难.他们明白: void MorhpolotyDilate_ChenLee(unsigned char* pBinImg, int imgW, int imgH, Tpoint* mask ...
- wpf 深度复制控件,打印控件
原文:wpf 深度复制控件,打印控件 <Window x:Class="WpfApp2.MainWindow" xmlns="http://schemas.micr ...
- 写给非专业人士看的 *** 简介(同时也解释了GFW )
写给非专业人士看的 *** 简介 这个文章来源于一个朋友在***的过程中,搞不清楚 *** 的配置问题,在这里我想按照我对 *** 的理解简单梳理一下,以便一些非专业人士也能了解 long long ...
- FC红白机游戏列表(维基百科)
1055个fc游戏列表 日文名 中文译名 英文版名 发行日期 发行商 ドンキーコング 大金刚 Donkey Kong 1983年7月15日 任天堂 ドンキーコングJR. 大金刚Jr. Donkey K ...
- AngularJS的简单使用(入门级)
AngularJS诞生于2009年,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款产品当中. AngularJS有着诸多特性,最为 ...