BZOJ - 2783 树
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
输出格式:
输出路径节点总和为S的路径数量。
输入样例: |
输出样例: |
3 3 1 2 3 1 2 1 3 |
2 |
数据范围:
对于30%数据,N≤100;
对于60%数据,N≤1000;
对于100%数据,N≤100000,所有权值以及S都不超过1000。
这个是JLOI2012的T1,发出来仅为了试题完整
=============================================================================================
在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。
Input
第一行是两个整数N和S,其中N是树的节点数。
第二行是N个正整数,第i个整数表示节点i的正整数。
接下来的N-1行每行是2个整数x和y,表示y是x的儿子。
Output
输出路径节点总和为S的路径数量。
Sample Input
3 3 1 2 3 1 2 1 3
Sample Output
2
Hint
对于100%数据,N≤100000,所有权值以及S都不超过1000。
题解:
这个题目看上去是不是要点分,稍微看一下数据范围,S不超过1000,而且所有点权都为正整数,这意味着我们每次枚举一个起点,dfs,层数不会超过1000层,而且因为要保证深度关系,很多节点都远远达不到。这题还是很暴力吧。
代码:
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream>
#define MAXN 101000
using namespace std;
int ans=;
int val[MAXN],b[MAXN],dep[MAXN],roof;
struct edge{
int first;
int next;
int to;
}a[MAXN*];
int n,m,num=; void addedge(int from,int to){
a[++num].to=to;
a[num].next=a[from].first;
a[from].first=num;
} void dfs(int now,int fa,int tot){
if(tot==m) ans++;
if(tot>=m) return;
for(int i=a[now].first;i;i=a[i].next){
int to=a[i].to;
if(to==fa) continue;
if(dep[to]<=dep[now]) continue;
dfs(to,now,val[to]+tot);
}
} void pre(int now,int fa){
dep[now]=dep[fa]+;
for(int i=a[now].first;i;i=a[i].next){
int to=a[i].to;if(to==fa) continue;
pre(to,now);
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&val[i]);
for(int i=;i<=n-;i++){
int x,y;scanf("%d%d",&x,&y);
addedge(x,y),addedge(y,x);b[y]=;
}
for(int i=;i<=n;i++) if(!b[i]) roof=i;
pre(roof,);
for(int i=;i<=n;i++) dfs(i,,val[i]);
printf("%d",ans);
return ;
}
BZOJ - 2783 树的更多相关文章
- BZOJ 2783 树 - 树上倍增 + 二分
传送门 分析: 对每个点都进行一次二分:将该点作为链的底端,二分链顶端所在的深度,然后倍增找到此点,通过前缀和相减求出链的权值,并更新l,r. code #include<bits/stdc++ ...
- BZOJ 2783 JLOI 2012 树 乘+二分法
标题效果:鉴于一棵树和一个整数s,问中有树木几个这样的路径,点和担保路径==s,深度增量点. 这一数额的输出. 思维:用加倍的想法,我们可以O(logn)在时间找点他第一n.因为点权仅仅能是正的,满足 ...
- bzoj 2783: [JLOI2012]树
Description 在这个问题中,给定一个值S和一棵树.在树的每个节点有一个正整数,问有多少条路径的节点总和达到S.路径中节点的深度必须是升序的.假设节点1是根节点,根的深度是0,它的儿子节点的深 ...
- bzoj 2783: [JLOI2012]树【树上差分】
注意是等于s不是大于s dfs,用set或者map存这条链到root的点权和sum[u],更新答案的时候查一下有没有s-sum[u]即可 #include<iostream> #inclu ...
- bzoj 3196 树套树模板
然而我还是在继续刷水题... 终于解开了区间第k大的心结... 比较裸的线段树套平衡树,比较不好想的是求区间第k大时需要二分一下答案,然后问题就转化为了第一个操作.复杂度nlog3n.跑的比较慢... ...
- BZOJ 1969 树链剖分+Tarjan缩点
发现自己Tarjan的板子有错误.发现可以用Map直接删去边,Get. 听说std是双连通.LCA.并查集.离线思想.用BIT维护dfs序和并查集维护LCA的动态缩点的好题 #include < ...
- BZOJ 2286 树链剖分+DFS序+虚树+树形DP
第一次学习虚树,就是把无关的点去掉.S里维护一条链即可. #include <iostream> #include <cstring> #include <cstdio& ...
- BZOJ 4326 树链剖分+二分+差分+记忆化
去年NOIP的时候我还不会树链剖分! 还是被UOJ 的数据卡了一组. 差分的思想还是很神啊! #include <iostream> #include <cstring> #i ...
- BZOJ 3110 树套树 && 永久化标记
感觉树套树是个非常高深的数据结构.从来没写过 #include <iostream> #include <cstdio> #include <algorithm> ...
随机推荐
- 【Spring】对持久层技术的整合
一.持久层技术 二.JdbcTemplate 开发步骤: 1. 导入相关的jar包 2. 配置连接池(数据源) 将参数设置到属性文件中: 3. 创建表 4. 编写实体类 5. Dao层实现 5.1 继 ...
- 【Offer】[18-2] 【删除链表中重复的节点】
题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 例如,链表1->2->3- ...
- 关于BFC的一些事
BFC的生成 在实现CSS的布局时,假设我们不知道BFC的话,很多地方我们生成了BFC但是不知道.在布局中,一个元素是block元素还是inline元素是必须要知道的.而BFC就是用来格式化块状元素盒 ...
- [整理] jQuery插件开发
1.类级别的插件开发 类级别的插件开发,可似为给jQuery类添加方法,调用方式:$.你的方法(),如:$.ajax() 函数. 1.1.给jQuery类添加方法 $.alertMsg = funct ...
- 记一次往集群添加机器,liveNodes缺少机器的情况
1.背景 公司线下环境,原本有三台虚拟机组成的集群(cdh5.3.6),由于硬件配置比较低,申请了新的三台机器,8核8G内存,在上面部署了cdh5.11.1,较新的cdh集群. 由于远来的三台还在使用 ...
- Kubernetes v1.16 发布 | 云原生生态周报 Vol. 20
作者:心贵.进超.元毅.心水.衷源.洗兵 业界要闻 Kubernetes v1.16 发布 在这次发布中值得关注的一些特性和 Feature: CRD 正式进入 GA 阶段: Admission We ...
- 弄懂Java为何只有值传递
最近有同学问我关于Java中值传递与引用传递的问题,在此小结一下 值传递是指在函数调用时将实参内容复制一份传递给形参,这样在函数中改变该参数不会对原参数产生影响. 引用传递是指将对象地址的引用传递给该 ...
- MAC sublime常用快捷键(慢慢补)
1、 FN + 左方向键:向左选择一行 2、FN + 右方向键:向右选择一行 3、FN + 上方向键:跳到页头 4、FN + 下方向键:跳到页尾 5、FN + SHIFT + 左方向键|上方向键:从当 ...
- [Advanced Python] 11 - Implement a Class
基础概念:[Python] 08 - Classes --> Objects 进阶概念:[Advanced Python] 11 - Implement a Class 参考资源:廖雪峰,面向对 ...
- 【POJ - 3723 】Conscription(最小生成树)
Conscription Descriptions 需要征募女兵N人,男兵M人. 每招募一个人需要花费10000美元. 如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱. 给出若干男女之前的1 ...