【简单递归】

题目描述

已知 n 个整数b1,b2,…,bn

以及一个整数 k(k<n)。

从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。

例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:

    3+7+12=22  3+7+19=29  7+12+19=38  3+12+19=34。

  现在,要求你计算出和为素数共有多少种。

例如上例,只有一种的和为素数:3+7+19=29。

输入

第一行两个整数:n , k (1<=n<=20,k<n) 

第二行n个整数:x1,x2,…,xn (1<=xi<=5000000)

输出

一个整数(满足条件的方案数)。

样例输入

4 3

3 7 12 19

样例输出

1

代码

#include <iostream>
#include <cstring>
#include <vector>
using namespace std; //判断是否是素数
bool isprime(int n)
{
if (n<1)return false;
for (int i=2;i*i<n;i++)
{
if (n%i==0)//n&(i-1)==0
return false;
}
return true;
}
int a[22],p[22], b[22];
bool vis[22];
int n, k, sum, ans;
int cnt = 0;
vector<vector<int> > index_vec;
vector<int> sum_vec;
void dfs(int index)
{
cout << "Enter dfs, " << ++cnt << "th" << ", index:" << index << ", p[index-1]:" << p[index-1] << endl;
if (index==k+1)
{
if (isprime(sum))
{
ans++;
cout << "sum:" << sum << " is prime." << endl;
} //打印每一个元素组合
vector<int> v;
for (int i=1;i<=index-1;i++)
{
cout << p[i] << " ";
v.push_back(p[i]); }
index_vec.push_back(v);
sum_vec.push_back(sum);
cout << endl;
cout << "sum:" << sum << endl;
return;
} //遍历n个数
for (int i=1;i<=n;i++)
{
//条件1:该元素在本次遍历中是否被访问过
//条件2:保障遍历的i下标大于已统计过的最后一个元素下标 cout << "i:" << i << ", vis:" << vis[i] << ", index:" << index << ", p[index-1]:" << p[index-1] << endl;
if (vis[i]==false && i>p[index-1])
{
p[index] = i;//数组p用来保存元素下标,index为当前统计的元素总数目
vis[i] = true;//标记该元素已被该次计算统计过
sum += a[i];//更新和,在全排列过程中,对结果进行统计 cout << "Enter the next dfs" << endl;
cout << "sum:" << sum << ", i:" << i << ", vis[i]:" << vis[i] << endl; dfs(index+1);//开始下一次递归计算 cout << "return from dfs" << endl; //回溯
vis[i] = false;
sum -= a[i]; cout << "sum:" << sum << ", i:" << i << ", vis[i]:" << vis[i] << ", index:" << index << ", p[index-1]:" << p[index-1] << endl; }
}
} int main()
{
//初始化全局变量
memset(b, 0, sizeof(b));
memset(vis, false, sizeof(vis)); //获取输入
cin >> n >> k;
cout << "n=" << n << " ,k=" << k << endl;
for (int i=1; i<=n;i++)
{
cin >> a[i];
p[i]=i;
} ans = 0;
dfs(1); cout << ans << endl;
int seq=0;
for (auto it: sum_vec)
{
cout << "sum: " << it << endl;
for (auto it_idx: index_vec[seq])
{
cout << it_idx << " ";
}
cout << endl;
++seq;
} return 0;
}

题目解析

循环中调用递归

代码打印帮助理解递归过程

4
3
n=4 ,k=3
3
7
12
19 Enter dfs, 1th, index:1, p[index-1]:0
i:1, vis:0, index:1, p[index-1]:0
Enter the next dfs
sum:3, i:1, vis[i]:1
Enter dfs, 2th, index:2, p[index-1]:1
i:1, vis:1, index:2, p[index-1]:1
i:2, vis:0, index:2, p[index-1]:1
Enter the next dfs
sum:10, i:2, vis[i]:1
Enter dfs, 3th, index:3, p[index-1]:2
i:1, vis:1, index:3, p[index-1]:2
i:2, vis:1, index:3, p[index-1]:2
i:3, vis:0, index:3, p[index-1]:2
Enter the next dfs
sum:22, i:3, vis[i]:1
Enter dfs, 4th, index:4, p[index-1]:3
1 2 3
sum:22
return from dfs
sum:10, i:3, vis[i]:0, index:3, p[index-1]:2
i:4, vis:0, index:3, p[index-1]:2
Enter the next dfs
sum:29, i:4, vis[i]:1
Enter dfs, 5th, index:4, p[index-1]:4
sum:29 is prime.
1 2 4
sum:29
return from dfs
sum:10, i:4, vis[i]:0, index:3, p[index-1]:2
return from dfs
sum:3, i:2, vis[i]:0, index:2, p[index-1]:1
i:3, vis:0, index:2, p[index-1]:1
Enter the next dfs
sum:15, i:3, vis[i]:1
Enter dfs, 6th, index:3, p[index-1]:3
i:1, vis:1, index:3, p[index-1]:3
i:2, vis:0, index:3, p[index-1]:3
i:3, vis:1, index:3, p[index-1]:3
i:4, vis:0, index:3, p[index-1]:3
Enter the next dfs
sum:34, i:4, vis[i]:1
Enter dfs, 7th, index:4, p[index-1]:4
1 3 4
sum:34
return from dfs
sum:15, i:4, vis[i]:0, index:3, p[index-1]:3
return from dfs
sum:3, i:3, vis[i]:0, index:2, p[index-1]:1
i:4, vis:0, index:2, p[index-1]:1
Enter the next dfs
sum:22, i:4, vis[i]:1
Enter dfs, 8th, index:3, p[index-1]:4
i:1, vis:1, index:3, p[index-1]:4
i:2, vis:0, index:3, p[index-1]:4
i:3, vis:0, index:3, p[index-1]:4
i:4, vis:1, index:3, p[index-1]:4
return from dfs
sum:3, i:4, vis[i]:0, index:2, p[index-1]:1
return from dfs
sum:0, i:1, vis[i]:0, index:1, p[index-1]:0
i:2, vis:0, index:1, p[index-1]:0
Enter the next dfs
sum:7, i:2, vis[i]:1
Enter dfs, 9th, index:2, p[index-1]:2
i:1, vis:0, index:2, p[index-1]:2
i:2, vis:1, index:2, p[index-1]:2
i:3, vis:0, index:2, p[index-1]:2
Enter the next dfs
sum:19, i:3, vis[i]:1
Enter dfs, 10th, index:3, p[index-1]:3
i:1, vis:0, index:3, p[index-1]:3
i:2, vis:1, index:3, p[index-1]:3
i:3, vis:1, index:3, p[index-1]:3
i:4, vis:0, index:3, p[index-1]:3
Enter the next dfs
sum:38, i:4, vis[i]:1
Enter dfs, 11th, index:4, p[index-1]:4
2 3 4
sum:38
return from dfs
sum:19, i:4, vis[i]:0, index:3, p[index-1]:3
return from dfs
sum:7, i:3, vis[i]:0, index:2, p[index-1]:2
i:4, vis:0, index:2, p[index-1]:2
Enter the next dfs
sum:26, i:4, vis[i]:1
Enter dfs, 12th, index:3, p[index-1]:4
i:1, vis:0, index:3, p[index-1]:4
i:2, vis:1, index:3, p[index-1]:4
i:3, vis:0, index:3, p[index-1]:4
i:4, vis:1, index:3, p[index-1]:4
return from dfs
sum:7, i:4, vis[i]:0, index:2, p[index-1]:2
return from dfs
sum:0, i:2, vis[i]:0, index:1, p[index-1]:0
i:3, vis:0, index:1, p[index-1]:0
Enter the next dfs
sum:12, i:3, vis[i]:1
Enter dfs, 13th, index:2, p[index-1]:3
i:1, vis:0, index:2, p[index-1]:3
i:2, vis:0, index:2, p[index-1]:3
i:3, vis:1, index:2, p[index-1]:3
i:4, vis:0, index:2, p[index-1]:3
Enter the next dfs
sum:31, i:4, vis[i]:1
Enter dfs, 14th, index:3, p[index-1]:4
i:1, vis:0, index:3, p[index-1]:4
i:2, vis:0, index:3, p[index-1]:4
i:3, vis:1, index:3, p[index-1]:4
i:4, vis:1, index:3, p[index-1]:4
return from dfs
sum:12, i:4, vis[i]:0, index:2, p[index-1]:3
return from dfs
sum:0, i:3, vis[i]:0, index:1, p[index-1]:0
i:4, vis:0, index:1, p[index-1]:0
Enter the next dfs
sum:19, i:4, vis[i]:1
Enter dfs, 15th, index:2, p[index-1]:4
i:1, vis:0, index:2, p[index-1]:4
i:2, vis:0, index:2, p[index-1]:4
i:3, vis:0, index:2, p[index-1]:4
i:4, vis:1, index:2, p[index-1]:4
return from dfs
sum:0, i:4, vis[i]:0, index:1, p[index-1]:0
1
sum: 22
1 2 3
sum: 29
1 2 4
sum: 34
1 3 4
sum: 38
2 3 4 Process finished with exit code 0

DFS-递归入门的更多相关文章

  1. POJ 1321-棋盘问题(DFS 递归)

    POJ 1321-棋盘问题 K - DFS Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I6 ...

  2. 数据结构作业——图的存储及遍历(邻接矩阵、邻接表+DFS递归、非递归+BFS)

    邻接矩阵存图 /* * @Author: WZY * @School: HPU * @Date: 2018-11-02 18:35:27 * @Last Modified by: WZY * @Las ...

  3. Timus 1329. Galactic History。LCA最近公共祖先或dfs递归离线处理!

    1329. Galactic History 比赛的时候看到学弟A了这题然后跟榜做,结果在LCA的道路上一去不复返,这个题是很像LCA求最近公共祖先的,不过三个人都没学过LCA,只能拿着资料看着像然后 ...

  4. 【递归入门】组合的输出:dfs

    题目描述 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r < = n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现要求你不用递归的方 ...

  5. 【递归入门】组合+判断素数:dfs(递归)

    题目描述 已知 n 个整数b1,b2,…,bn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和. 例如当 n=4,k=3,4 个整数分别为 3,7,12, ...

  6. [LeetCode] Combinations (bfs bad、dfs 递归 accept)

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  7. 图的DFS递归和非递归

    看以前写的文章: 图的BFS:http://www.cnblogs.com/youxin/p/3284016.html DFS:http://www.cnblogs.com/youxin/archiv ...

  8. 深度优先搜索(DFS)递归形式改为非递归形式

    DFS将递归改为非递归这个方法的需求来自于一道三维积木组合的题目,还在苦苦调试中,暂且不提. 普通的认识对于递归向非递归的转化无非是使用栈,但是结合到深度搜索如何将栈很好利用,如何很好保存现场,都不是 ...

  9. 八皇后问题 dfs/递归

    #include <bits/stdc++.h> using namespace std; const int maxn = 55; int ans=0; int vis_Q[maxn]; ...

  10. (N叉树 DFS 递归 BFS) leetcode 559. Maximum Depth of N-ary Tree

    Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the longe ...

随机推荐

  1. 从0系统学Android--1.2 手把手带你搭建开发环境

    要想进行程序开发,首先我们需要搭建开发环境,下面就开始搭建环境. 1.2.1 所需的工具 首先 Android 开发是基于 Java 的,因此你需要掌握简单的 Java 语法.会基础的 Java 语法 ...

  2. 《VR入门系列教程》之7---DK2和Crescent Bay

    The DK2     于2014年春,Oculus发布了第二代开发版头显设备,代号为DK2.与DK1相比,Oculus Rift DK2的外观有很大改进,并且轻了许多,体积仍然比较大,可以罩住大部分 ...

  3. linuk挂载命令

    1 Linuk挂在命令如下(将一个目录下面的东西挂在到另一个目录上面) mount -bind -o rw /data/vsftpd/原目录   /data/vsftpd/目标目录 2 查看所有的挂载 ...

  4. 01-k8s 架构

    原文地址:https://github.com/kubernetes/kubernetes/blob/release-1.3/docs/design/architecture.md Kubernete ...

  5. Android开发——通过wifi接收IPCamera视频流

    前面,我们已经了解了怎么在android app上打开关闭和扫描,搜索wifi,现在,我来写一下怎么通过连接wifi来使app获取到IPCamera摄像头的视频. 一.通过URL获取视频的地址 二.创 ...

  6. DevOps相关知识点

    DevOps 持续集成 简述 持续集成简称CI,是软件的开发和发布标准流程的最重要的部分 作为一个开发实践,在C中可以通过自动化等手段高频地去获取产品反馈并响应反馈的过程 简单的来说,持续集成就是持续 ...

  7. Python实现网络多人聊天室

    网络多人聊天室 文件结构: chatroom ├── client.py  # 客户端代码 ├── language.py  # 语言文件 ├── server.py  # 服务端代码 └── set ...

  8. 自定义SWT控件四之其它下拉框

    4.其它下拉框 4.1 添加联动二级多选择框(有添加按钮和删除按钮) package com.view.control.select; import java.util.ArrayList; impo ...

  9. 简单聊聊红黑树(Red Black Tree)

    ​ 前言 众所周知,红黑树是非常经典,也很非常重要的数据结构,自从1972年被发明以来,因为其稳定高效的特性,40多年的时间里,红黑树一直应用在许多系统组件和基础类库中,默默无闻的为我们提供服务,身边 ...

  10. PythonDay04

    ## 第四章 ### 今日内容 - 列表- 元组- range ### 列表 列表相比于字符串,不仅可以储存不同的数据类型,而且可以储存大量数据,是一种可变的数据类型 64位python的限制是 11 ...