概述

BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,因为decoder是不能获要预测的信息的。模型的主要创新点都在pre-train方法上,即用了Masked LM和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。

BERT的应用步骤

模型结构

  • BERT BASE:和OPENAI Transformer大小差不多

    • 12个encoder layers(Transformer Blocks)
    • 768个隐藏单元的前向网络
    • 12个attention heads
  • BERT LARGE:State of Art
    • 24个encoder layers(Transformer Blocks)
    • 1024个隐藏单元的前向网络
    • 16个attention heads

模型输入输出

Inputs

这里的Embedding由三种Embedding求和而成

其中:

  • Token Embeddings:是词向量,第一个单词是CLS标志,可以用于之后的分类任务
  • Segment Embeddings:用来区别两种句子,因为预训练不光做LM还要做以两个句子为输入的分类任务
  • Position Embeddings:和之前文章中的Transformer不一样,不是三角函数而是学习出来的

模型的每一层运行self-attention,然后将结果交给前向网络,再传输给下一个编码器

Outputs

每个位置输出一个\(hidden\_size\)大小的向量,对于分类任务,我们只关注第一个位置的输出([CLS]的位置)

其他方法

ElMo

在对于预训练的词向量,每个词的词向量是固定的。但是ElMo的基本思想是,对于不同的上下文,同一个词有不同的含义。因此ElMo是感知语境的词向量。

ElMo使用一个双向LSTM基于特定的任务来得到上述词嵌入。通常的做法是,在大量的数据集上训练ElMo LSTM,然后将它作为其它模型的一个组件。

ElMo是通过预测序列的下一个词进行训练的,这个任务被称为语言建模(Language Modeling),这能充分利用大量的无标注数据。而且,ElMo训练了一个双向的LSTM,因此它的语言模型不仅能感知下一个词,也能感知上一个词。最终的上下文感知词嵌入是通过将隐藏状态加权求和而来的。如下图所示:

ULM-FiT

介绍了在各种任务上进行fine-tune的语言模型和流程,不仅仅是词向量和上下文感知的嵌入。

OpenAI Transformer

OpenAI Transformer只考虑了Transformer的decoder部分,叠加了12层的decoder层。

在预训练之后,OpenAI Transformer就能够用于夏有任务的迁移学习,对于不同任务的不同输入,OpenAI模型拥有不同的输入,下图是不同的任务:

几种模型的比较

对比OpenAI GPT(Generative pre-trained transformer),BERT是双向的Transformer block连接;就像单向rnn和双向rnn的区别,直觉上来讲效果会好一些。

对比ElMo,虽然都是“双向”,但目标函数其实是不同的。ElMo是分别以\(P(w_i| w_1,\cdots w_{i-1})\)和\(P(w_i|w_{i+1}, \cdots w_n)\)作为目标函数,独立训练处两个representation然后拼接,而BERT则是以\(P(w_i|w_1, \cdots ,w_{i-1}, w_{i+1},\cdots,w_n)\)作为目标函数训练语言模型

BERT: From Decoders to Encoders

OpenAI虽然基于Transformer给出了一个可以fine-tune的预训练模型,但是因为没有使用LSTM,丢失了部分信息(比如双向信息)。而ElMO利用双向LSTM,但是很复杂。因此BERT的想法就是,既基于Transformer模型,又能在语言模型中捕捉到前向和后向的信息。

Task 1: Masked Language Model

第一步预训练的目标就是做语言模型,从上文模型结构中看到了这个模型的不同,即bidirectional。关于为什么要如此的bidirectional,作者在reddit上做了解释,意思就是如果使用预训练模型处理其他任务,那人们想要的肯定不止某个词左边的信息,而是左右两边的信息。而考虑到这点的模型ELMo只是将left-to-right和right-to-left分别训练拼接起来。直觉上来讲我们其实想要一个deeply bidirectional的模型,但是普通的LM又无法做到。

在训练过程中作者随机mask 15%的token,而不是把像cbow一样把每个词都预测一遍。最终的损失函数只计算被mask掉那个token

Mask如何做也是有技巧的,如果一直用标记[MASK]代替(在实际预测时是碰不到这个标记的)会影响模型,所以随机mask的时候10%的单词会被替代成其他单词,10%的单词不替换,剩下80%才被替换为[MASK]。具体为什么这么分配,作者没有说。要注意的是Masked LM预训练阶段模型是不知道真正被mask的是哪个词,所以模型每个词都要关注。

Task 2: Next Sentence Prediction

因为涉及到QA和NLI之类的任务,增加了第二个预训练任务,目的是让模型理解两个句子之间的联系。训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,模型预测B是不是A的下一句。预训练的时候可以达到97-98%的准确度。

注意,作者特意说了语料的选取很关键,要选用document-level的而不是sentence-level的,这样可以具备抽象连续长序列特征的能力。

Task specific-Models

对于不同的任务,BERT模型结构的使用有不同的方式,如下图所示:

BERT for feature extraction

fine-tuning不是利用BERT的唯一方式。和ElMo一样,也可以使用BERT创建上下文感知的词向量,然后将这些向量feed到现有模型中使用。

究竟该用哪个向量作为上下文感知的嵌入,这应该取决于具体的任务。比如说高层特征和低层特征的区别。

Google BERT的更多相关文章

  1. Google BERT应用之《红楼梦》对话人物提取

    Google BERT应用之<红楼梦>对话人物提取 https://www.jiqizhixin.com/articles/2019-01-24-19

  2. Google BERT摘要

    1.BERT模型 BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,因为dec ...

  3. BERT预训练模型的演进过程!(附代码)

    1. 什么是BERT BERT的全称是Bidirectional Encoder Representation from Transformers,是Google2018年提出的预训练模型,即双向Tr ...

  4. BERT模型

    BERT模型是什么 BERT的全称是Bidirectional Encoder Representation from Transformers,即双向Transformer的Encoder,因为de ...

  5. 我爱自然语言处理bert ner chinese

    BERT相关论文.文章和代码资源汇总 4条回复 BERT最近太火,蹭个热点,整理一下相关的资源,包括Paper, 代码和文章解读. 1.Google官方: 1) BERT: Pre-training ...

  6. 基于BERT预训练的中文命名实体识别TensorFlow实现

    BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...

  7. BERT模型的OneFlow实现

    BERT模型的OneFlow实现 模型概述 BERT(Bidirectional Encoder Representations from Transformers)是NLP领域的一种预训练模型.本案 ...

  8. 用NVIDIA-NGC对BERT进行训练和微调

    用NVIDIA-NGC对BERT进行训练和微调 Training and Fine-tuning BERT Using NVIDIA NGC 想象一下一个比人类更能理解语言的人工智能程序.想象一下为定 ...

  9. NLP与深度学习(六)BERT模型的使用

    1. 预训练的BERT模型 从头开始训练一个BERT模型是一个成本非常高的工作,所以现在一般是直接去下载已经预训练好的BERT模型.结合迁移学习,实现所要完成的NLP任务.谷歌在github上已经开放 ...

随机推荐

  1. 《挑战30天C++入门极限》C/C++中字符指针数组及指向指针的指针的含义

        C/C++中字符指针数组及指向指针的指针的含义 就指向指针的指针,很早以前在说指针的时候说过,但后来发现很多人还是比较难以理解,这一次我们再次仔细说一说指向指针的指针. 先看下面的代码,注意看 ...

  2. UOJ#397. 【NOI2018】情报中心 线段树合并 虚树

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ397.com 前言 这真可做吗?只能贺题解啊-- 题解 我们称一条路径的 LCA 为这条路径两端点的 LCA. 我们将相交 ...

  3. 比较实用的Java工具类

    一. org.apache.commons.io.IOUtils closeQuietly:关闭一个IO流.socket.或者selector且不抛出异常,通常放在finally块 toString: ...

  4. vue + .net core 项目,源码在GitHub 希望对大家有所帮助

    一. github UI库 : iview 前端部分 vue .net core + DI + EF(dbfirst) 后端API 部分 .Net Core 二. 往期相关博客 SqlServer 获 ...

  5. sql转码

    select               bzj,               sqid,               zcslh,               qymc,               ...

  6. mysql5.6源码部署

    一.准备环境 环境:centos-7.3 一台软件版本:mysql-5.6.39 1.安装依赖yum -y install autoconf libaio bison ncurses-devel 2. ...

  7. fluent当中的梯度宏和VOF梯度的获取【转载】

    1 FLUENT变量梯度宏 C_R_G C_P_G C_U_G C_V_G C_W_G C_T_G C_H_G C_YI_G C_R_RG C_P_RG C_U_RG C_V_RG C_W_RG C_ ...

  8. 对okhttp参数的一些思考

    背景 项目中使用OkHttp访问三方服务 参数 创建okhttp客户端类的时候需要设置一些参数,有些可能是坑,仅供参考: client = new OkHttpClient.Builder() .di ...

  9. select,poll,epoll最简单的解释

    从事服务端开发,少不了要接触网络编程.epoll 作为 Linux 下高性能网络服务器的必备技术至关重要,nginx.Redis.Skynet 和大部分游戏服务器都使用到这一多路复用技术. epoll ...

  10. centos下php扩展安装imagemagick

    centos下php扩展安装imagemagick 2015-10-23TONY7PHP 对于php的imagick主要是两部分的安装 ImageMagick主程序地址http://www.image ...