ZR#990
ZR#990
解法:
首先,一个 $ k $ 进制的数的末尾 $ 0 $ 的个数可以这么判断
while(x) {
x /= k;
cnt++;//cnt为0的个数
}
因为这道题的 $ 0 $ 的个数是奇数个,所以我们可以很快的知道 $ k_1,k_3,k_5 \cdots $ 的值。
又因为能被 $ k_i $ 整除的数一定能被 $ k $ 整除,所以我们可以简单容斥+二分解决问题。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long
LL n,k,ans;
inline LL check(LL x) {
LL flag = 1,res = 0;
while(x) {
x /= k;
res += flag * x;
flag = -flag;
}
return res;
}
int main() {
scanf("%lld%lld",&n,&k);
LL l = 1,r = 1e18;
while(l <= r) {
LL mid = (l + r) >> 1;
if(check(mid) < n) {
l = mid + 1;
ans = l;
}
else r = mid - 1;
}
printf("%lld\n",ans);
//system("pasue");
return 0;
}
ZR#990的更多相关文章
- 01_蚂蚁感冒(第五届蓝桥预赛本科B组第8题 nyoj 990)
问题来源:第五届蓝桥预赛本科B组第8题 问题描述:有在一条定长(100cm)的直杆上有n(1<n<50)只蚂蚁(每只蚂蚁的起点都不一样),他们都以相同的速度(1cm/s)向左或者向右爬, ...
- oracle 函数to_char(数据,'FM999,999,999,999,990.00') 格式化数据(转)
转载自:https://blog.csdn.net/fupengyao/article/details/52778565 遇到了oracle 取数格式问题,这里记一下 我们通常在做数据算数后,会想要让 ...
- ZR#1005
ZR#1005 解法: 题解给了一个建图跑最短路的做法,但好像没有必要,因为 $ m $ 没有用,所以直接上完全背包就行了. CODE: #include<iostream> #inclu ...
- ZR#1004
ZR#1004 解法: 对于 $ (x^2 + y)^2 \equiv (x^2 - y)^2 + 1 \pmod p $ 化简并整理得 $ 4x^2y \equiv 1 \pmod p $ 即 $ ...
- ZR#1009
ZR#1009 解法: 因为无敌的SR给了一个大暴力算法,所以通过打表发现了了一些神奇的性质,即第一行和第一列的对应位置数值相等. 我们可以通过手算得出 $ F(n) = \frac{n(n + 1) ...
- ZR#1008
ZR#1008 解法: 直接预处理出来执行完一个完整的串可以到达的位置,然后算出重复的次数直接乘在坐标上,最后处理一下余下的部分就行了. CODE: #include<iostream> ...
- ZR#1015
ZR#1015 解法: 我们需要求得, $ g_i $ 表示长度为的最长不下降子序列个数. 设 $ f_{i,j} $ 表示统计第前$ i $ 个数字,得到最长不下降子序列末端为 $ j $ . 显然 ...
- ZR#1012
## ZR#1012 blog咕咕咕了好久,开始补. 解法: 一个很显然的性质, $ x $ 只能转移到 $ x+1 $ 或者 $ 2x $ 处,所以我们可以以此性质建图,即 $ x $ 向 $ x ...
- ZR#985
ZR#985 解法: 可以先假设每个区间中所有颜色都出现,然后减掉多算的答案.对每种颜色记录它出现的位置,则相邻两个位置间的所有区间都要减去,时间复杂度 $ O(n) $ . 其实可以理解为加法原理的 ...
随机推荐
- MyBatis 中#和$符号的区别
#相当于对数据 加上 双引号,$相当于直接显示数据 1. #将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#,如果传入的值是111,那么解析成sq ...
- 【开发笔记】- Linux命令大全
系统信息 arch 显示机器的处理器架构(1) uname -m 显示机器的处理器架构(2) uname -r 显示正在使用的内核版本 dmidecode -q 显示硬件系统部件 - (SMBIOS ...
- element-ui 默认排序
table属性中,设置 :default-sort="{prop:'time', order:'descending'}" 1. prop为排序列,order为排列顺序 2. 多级 ...
- ORM 对表操作 详解
目录 ORM对表操作详解 表结构 ORM对表的 增 删 改 查 基于对象的跨表查询 -- 类似于子查询 基于双下划的跨表查询 -- 连表 join ORM对表的操作示例 正向查 与 反向查 relat ...
- 修改网口速度mii-tool和ethtool
mii-tool # mii-tool -F 100baseTx-FD media: 100baseT4, 100baseTx-FD, 100baseTx-HD, 10baseT-FD, 10base ...
- 【hbase】hbase理论学习
HBase用途: 基于Hadoop Distributed File System,是一个开源的,基于列存储模型的分布式数据库. HBase简介: HBase是一个分布式的.多版本的.面向列的开源数据 ...
- CRM-Q模糊查询
Q查询-模糊查询 示例一 q=Q() # 实例化一个Q的对象q,我们可以给它加条件 q.children.append(("name","xxx")) # 添加 ...
- Flask之基础
一,flask Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求 ...
- Linux磁盘管理——directory tree与mount point
参考:/sys 和 /dev 区别 Linux磁盘管理——虚拟文件系统 Directory tree Linux内的所有数据都是以文件的形态来呈现的,所以整个Linux系统最重要的地方就是direct ...
- python---Numpy模块中创建数组的常用方式代码示例
要机器学习,这方面内容不可少. import numpy as np import time # 对比标准python实现和numpy实现的性能差异 def sum_trad(): start = t ...