在说逻辑回归之前,可以先说一说逻辑回归与线性回归的区别:

逻辑回归与线性回归在学习规则形式上是完全一致的,它们的区别在于hθ(x(i))为什么样的函数

当hθ(x(i))=θTx(i)时,表示的是线性回归,它的任务是做回归用的。

时,表示的是逻辑回归,假定模型服从二项分布,使用最大似然函数推导的,它的任务是做分类用的,逻辑回归是一个广义的线性模型,是对数线性模型。

下面就是逻辑回归的推导过程了

首先我们来看看核函数即sigmoid函数的对Z的导数

这个结果在后续的推导过程会用到,这里的Z我们可以看成θTx。

Logistic回归参数估计:

假定:P(y=1 | x; θ)=hθ(x)
          P(y=0 | x; θ)=1-hθ(x)
          P(y | x; θ)=(hθ(x))y(1-hθ(x))1-y

这个是二分类任务,类别为1时发生概率为hθ(x),类别为0时发生概率为1-hθ(x),两类发生的概率独立同分布,所以可以使用似然函数将所有的样本发生的可能相乘,

接下来就是确定θ,按部就班先对似然函数取对数,再对θ求导

逻辑回归是机器学习中的一个非常常见的模型, 逻辑回归模型其实仅在线性回归的基础上,套用了一个逻辑函数。为了训练逻辑回归模型的参数θT需要一个代价函数,算法的代价函数是对m个样本的损失函数求和,损失函数越小,机器学习的参数相对来说就越小(当然过拟合除外)。

一般逻辑回归损失函数有两种表达:

1)

2)

一个事件的几率odds,是指该事件发生的概率与该事件不发生的概率的比值,

对这个比值取对数就是对数几率:logit函数

P(y=1 | x; θ) = hθ(x)
P(y=0 | x; θ) = 1-hθ(x)

这与线性回归有一定的共性,恰恰说明逻辑回归是一个广义的线性模型,是对数线性模型。

Logistic回归总结,原话转自https://www.cnblogs.com/Luv-GEM/p/10674719.html

Logistic回归模型,相比SVM、GBDT等模型,要简单得多,但是由于这个模型可解释性强,被广泛运用于各种业务场景中。

此外,它也是如今大行其道的深度学习算法的基础之一。

逻辑回归的优点有以下几点:

1、模型的可解释性比较好,从特征的权重可以看到每个特征对结果的影响程度。

2、输出结果是样本属于类别的概率,方便根据需要调整阈值。

3、训练速度快,资源占用少。

而缺点是:

1、准确率并不是很高。因为形式非常简单(非常类似线性模型),很难去拟合数据的真实分布。

2、处理非线性数据较麻烦。逻辑回归在不引入其他方法的情况下,只能处理线性可分的数据。

3、很难处理数据不平衡的问题。

机器学习之逻辑回归(Logistic)笔记的更多相关文章

  1. 机器学习 (三) 逻辑回归 Logistic Regression

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  2. Coursera公开课笔记: 斯坦福大学机器学习第六课“逻辑回归(Logistic Regression)” 清晰讲解logistic-good!!!!!!

    原文:http://52opencourse.com/125/coursera%E5%85%AC%E5%BC%80%E8%AF%BE%E7%AC%94%E8%AE%B0-%E6%96%AF%E5%9D ...

  3. 机器学习总结之逻辑回归Logistic Regression

    机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问 ...

  4. 机器学习入门11 - 逻辑回归 (Logistic Regression)

    原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 ...

  5. 机器学习二 逻辑回归作业、逻辑回归(Logistic Regression)

    机器学习二 逻辑回归作业   作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57 ...

  6. 机器学习(四)--------逻辑回归(Logistic Regression)

    逻辑回归(Logistic Regression) 线性回归用来预测,逻辑回归用来分类. 线性回归是拟合函数,逻辑回归是预测函数 逻辑回归就是分类. 分类问题用线性方程是不行的   线性方程拟合的是连 ...

  7. Python机器学习算法 — 逻辑回归(Logistic Regression)

    逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型 ...

  8. 机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 前面介绍过线性回归的基本知识, ...

  9. 100天搞定机器学习|Day8 逻辑回归的数学原理

    机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|D ...

随机推荐

  1. 关于SQL中的ROWNUM问题

    前言 昨天改小程序的后台,看见之前写的分页很奇怪,startIndex和endIndex两个下标, endIndex 总是在里面层,而startIndex总是在外层,我随后改了,直接Where row ...

  2. Leet Code 771.宝石与石头

    Leet Code编程题 希望能从现在开始,有空就做一些题,自己的编程能力太差了. 771 宝石与石头 简单题 应该用集合来做 给定字符串J 代表石头中宝石的类型,和字符串 S代表你拥有的石头. S  ...

  3. Python中单引号和双引号的作用

    一.单引号和双引号 在Python中我们都知道单引号和双引号都可以用来表示一个字符串,比如 str1 = 'python' str2 = "python" str1和str2是没有 ...

  4. C#中使用typeof关键字和GetType()获取类的内部结构(反射机制)

    一.问题描述 java有反射机制,C#也有反射机制,在C#中typeof关键字用于获取类型的System.Type对象,该对象的GetMethods()方法可以得到类型中定义的方法对象的计集合,调用方 ...

  5. mysql查看数据库表数量

    1.查看数据库表数量SELECT count(TABLE_NAME) FROM information_schema.TABLES WHERE TABLE_SCHEMA='dbname'; selec ...

  6. 什么是epistatic effects | 上位效应

    epistatic与interaction之间的区别与联系? genetic上的interaction是如何定义的? Epistasis is the phenomenon where the eff ...

  7. ubuntu16.04和ubuntu18.04安装dlib

    - # for macOS brew install cmake brew install boost brew install boost-python --with-python3 # for U ...

  8. 阿里重磅开源在线分析诊断工具Arthas(阿尔萨斯)

    github地址: Arthas English version goes here. Arthas 是Alibaba开源的Java诊断工具,深受开发者喜爱. 当你遇到以下类似问题而束手无策时,Art ...

  9. php nginx window系统 gettext方式实现UTF-8国际化多语言(i18n)

    开始应用: 步骤一:搭建环境(服务器已经完成,环境已经搭建好了) 1.首先查看你的php扩展目录下是否有php_gettext.dll这个文件,如果没有,这就需要你下载一个或是从其他地方拷贝一个,然后 ...

  10. Day1作业1:登陆接口(加入日志、注册功能)

    流程图如下: 最先考虑使用python中的list,以能取到user_list中的用户信息,但中途发现没有比较好的方法截取取密码,还是新手的缘故,最终选择了使用dict,以方便截取用户名以及相应的密码 ...