torchvision

https://pytorch.org/docs/stable/torchvision/index.html#module-torchvision

The torchvision package consists of popular datasets(数据集), model architectures(模型结构), and common image transformations(通用图像转换) for computer vision.

torchvision.get_image_backend():Gets the name of the package used to load images

torchvision.set_image_backend(backend): Specifies the package used to load images.

torchvision.set_video_backend(backend): Specifies the package used to decode videos.

MNIST;Fashion-MNIST;KMNIST;EMNIST;QMNIST;FakeData;COCO;LSUN;ImageFolder;DatasetFolder;ImageNet;CIFAR;STL10;SVHN;PhotoTour;SBU;Flickr;VOC;Cityscapes;SBD;USPS;Kinetics-400;HMDB51;UCF101.

Video

torchvision.io.read_video(filenamestart_pts=0end_pts=Nonepts_unit='pts')

Reads a video from a file, returning both the video frames as well as the audio frames.

Classification

The models subpackage contains definitions for the following model architectures for image classification:

AlexNet

VGG

ResNet

SqueezeNet

DenseNet

Inception v3

GoogLeNet

ShuffleNet v2

MobileNet v2

ResNeXt

Wide ResNet

MNASNet

You can construct a model with random weights by calling its constructor:

import torchvision.models as models

resnet18 = models.resnet18()

alexnet = models.alexnet()

vgg16 = models.vgg16()

squeezenet = models.squeezenet1_0()

densenet = models.densenet161()

inception = models.inception_v3()

googlenet = models.googlenet()

shufflenet = models.shufflenet_v2_x1_0()

mobilenet = models.mobilenet_v2()

resnext50_32x4d = models.resnext50_32x4d()

wide_resnet50_2 = models.wide_resnet50_2()

mnasnet = models.mnasnet1_0()

pre-trained models, using the PyTorch torch.utils.model_zoo. These can be constructed by passing pretrained=True:

import torchvision.models as models

resnet18 = models.resnet18(pretrained=True)

alexnet = models.alexnet(pretrained=True)

squeezenet = models.squeezenet1_0(pretrained=True)

vgg16 = models.vgg16(pretrained=True)

densenet = models.densenet161(pretrained=True)

inception = models.inception_v3(pretrained=True)

googlenet = models.googlenet(pretrained=True)

shufflenet = models.shufflenet_v2_x1_0(pretrained=True)

mobilenet = models.mobilenet_v2(pretrained=True)

resnext50_32x4d = models.resnext50_32x4d(pretrained=True)

wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)

mnasnet = models.mnasnet1_0(pretrained=True)

Instancing a pre-trained model will download its weights to a cache directory. This directory can be set using the TORCH_MODEL_ZOO environment variable. See torch.utils.model_zoo.load_url() for details.

Some models use modules which have different training and evaluation behavior, such as batch normalization. To switch between these modes, use model.train() or model.eval() as appropriate. See train() or eval() for details.

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. You can use the following transform to normalize:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])

 

Semantic Segmentation

The models subpackage contains definitions for the following model architectures for semantic segmentation:

FCN ResNet101

DeepLabV3 ResNet101

As with image classification models, all pre-trained models expect input images normalized in the same way. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. They have been trained on images resized such that their minimum size is 520.

The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are present in the Pascal VOC dataset. You can see more information on how the subset has been selected in references/segmentation/coco_utils.py. The classes that the pre-trained model outputs are the following, in order:

['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',

'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',

'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

 

Object Detection, Instance Segmentation and Person Keypoint Detection

The models subpackage contains definitions for the following model architectures for detection:

Faster R-CNN ResNet-50 FPN

Mask R-CNN ResNet-50 FPN

The pre-trained models for detection, instance segmentation and keypoint detection are initialized with the classification models in torchvision.

The models expect a list of Tensor[C, H, W], in the range 0-1. The models internally resize the images so that they have a minimum size of 800. This option can be changed by passing the option min_size to the constructor of the models.

For object detection and instance segmentation, the pre-trained models return the predictions of the following classes:

COCO_INSTANCE_CATEGORY_NAMES = [

'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',

'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',

'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',

'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',

'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',

'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',

'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',

'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',

'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',

'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',

'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',

'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'

]

For person keypoint detection, the pre-trained model return the keypoints in the following order:

COCO_PERSON_KEYPOINT_NAMES = [

'nose',

'left_eye',

'right_eye',

'left_ear',

'right_ear',

'left_shoulder',

'right_shoulder',

'left_elbow',

'right_elbow',

'left_wrist',

'right_wrist',

'left_hip',

'right_hip',

'left_knee',

'right_knee',

'left_ankle',

'right_ankle'

]

 

Video classification

We provide models for action recognition pre-trained on Kinetics-400. They have all been trained with the scripts provided in references/video_classification.

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W), where H and W are expected to be 112, and T is a number of video frames in a clip. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.43216, 0.394666, 0.37645] and std = [0.22803, 0.22145, 0.216989].

NOTE

The normalization parameters are different from the image classification ones, and correspond to the mean and std from Kinetics-400.

NOTE

For now, normalization code can be found in references/video_classification/transforms.py, see the Normalizefunction there. Note that it differs from standard normalization for images because it assumes the video is 4d.

Kinetics 1-crop accuracies for clip length 16 (16x112x112)

Network

Clip acc@1

Clip acc@5

ResNet 3D 18

52.75

75.45

ResNet MC 18

53.90

76.29

ResNet (2+1)D

57.50

78.81

torchvision.ops implements operators that are specific for Computer Vision.

支持:

torchvision.ops.nms(boxesscoresiou_threshold):Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union (IoU).

torchvision.ops.roi_align(inputboxesoutput_sizespatial_scale=1.0sampling_ratio=-1): Performs Region of Interest (RoI) Align operator described in Mask R-CNN

torchvision.ops.roi_pool(inputboxesoutput_sizespatial_scale=1.0): Performs Region of Interest (RoI) Pool operator described in Fast R-CNN

torchvision.utils.make_grid(tensornrow=8padding=2normalize=Falserange=Nonescale_each=Falsepad_value=0), Make a grid of images.

torchvision.utils.save_image(tensorfpnrow=8padding=2normalize=Falserange=Nonescale_each=Falsepad_value=0format=None), Save a given Tensor into an image file.

最新超简单解读torchvision的更多相关文章

  1. ssh框架整合---- spring 4.0 + struts 2.3.16 + maven ss整合超简单实例

    一 . 需求 学了这么久的ssh,一直都是别人整合好的框架去写代码,自己实际动手时才发现框架配置真是很坑爹,一不小心就踏错,真是纸上得来终觉浅! 本文将记录整合struts + spring的过程 , ...

  2. 程序员,一起玩转GitHub版本控制,超简单入门教程 干货2

    本GitHub教程旨在能够帮助大家快速入门学习使用GitHub,进行版本控制.帮助大家摆脱命令行工具,简单快速的使用GitHub. 做全栈攻城狮-写代码也要读书,爱全栈,更爱生活. 更多原创教程请关注 ...

  3. DCGAN 论文简单解读

    DCGAN的全称是Deep Convolution Generative Adversarial Networks(深度卷积生成对抗网络).是2014年Ian J.Goodfellow 的那篇开创性的 ...

  4. DCGAN 代码简单解读

    之前在DCGAN文章简单解读里说明了DCGAN的原理.本次来实现一个DCGAN,并在数据集上实际测试它的效果.本次的代码来自github开源代码DCGAN-tensorflow,感谢carpedm20 ...

  5. ECharts.js 超简单入门(本质canvas)

    ECharts.js 超简单入门(本质canvas) 一.总结 一句话总结:echarts这些图标的本质都是canvas. 二.ECharts.js学习(一) 简单入门 EChart.js 简单入门 ...

  6. 超简单集成 HMS ML Kit 实现最大脸微笑抓拍

    前言 如果大家对 HMS ML Kit 人脸检测功能有所了解,相信已经动手调用我们提供的接口编写自己的 APP 啦.目前就有小伙伴在调用接口的过程中反馈,不太清楚 HMS ML Kit 文档中的 ML ...

  7. 把C#程序(含多个Dll)合并成一个Exe的超简单方法

    开发程序的时候经常会引用一些第三方的DLL,然后编译生成的exe文件就不能脱离这些DLL独立运行了. 但是,很多时候我们本想开发一款只需要一个exe就能完美运行的小工具.那该怎么办呢? 下文介绍一种超 ...

  8. 记住密码超简单实现(C#)

    实现效果如下 实现过程 [Serializable] class User { //记住密码 private string loginID; public string LoginID { get { ...

  9. 超简单的JNI——NDK开发教程

    不好意思各位,我按照网上一些教程进行JNI开发,折腾了半天也没成功,最后自己瞎搞搞定了,其实超简单的,网上的教程应该过时了,最新版的AS就包含了NDK编译的功能,完全不用手动javah,各种包名路径的 ...

随机推荐

  1. Codeforces 1038 D. Slime

    [传送门] 其实就是这些数字前面能加正负号,在满足正负号均出现的情况下价值最大.那么就可以无脑DP$f[i][j][k]$表示到了第$i$位,正号是否出现($j$.$k$为$0$或$1$)能得到的最大 ...

  2. SPU、SKU、ARPU

    在涂涂商城开发之前,发现一篇关于电商中 SPU.SKU.ARPU 的介绍,转至博客,原文地址:http://www.ikent.me/blog/3017 什么是SPU.SKU.ARPU 首先,搞清楚商 ...

  3. SSFOJ P1453 子序列(一) 题解

    每日一题 day61 打卡 Analysis las数组表示的是最近一个为j的位置为是什么. dp数组的含义是以str[i]为结尾的子序列数量. 于是有状态转移方程: dp[las[i][j]]+=d ...

  4. OKR案例——不同类型的OKR实例

    OKR是一种能将团队调动起来一起向着一个方向去努力的绝佳目标管理法,它让我们的团队去挑战自己的极限,去实现更大的价值,去将我们的战略最完美的转化为成果. 然而,想要让OKR在我们的团队中发挥作用,制定 ...

  5. ps制作马赛克图片

  6. ES5新增的数组方法

    ES5新增:(IE9级以上支持)1.forEach():遍历数组,无返回值,不改变原数组.2.map():遍历数组,返回一个新数组,不改变原数组.3.filter():过滤掉数组中不满足条件的值,返回 ...

  7. 【搜索】$P1092$虫食算

    题目链接 首先,我们只考虑加法的虫食算.这里的加法是N进制加法,算式中三个数都有N位,允许有前导的0. 其次,虫子把所有的数都啃光了,我们只知道哪些数字是相同的,我们将相同的数字用相同的字母表示,不同 ...

  8. mac切图

    1.按住command键位, 两只手指点击需要切的图 2.再在右边栅格化图层 3.选中需要剪切的图层.command+c 和command+n和 command+v OK 切整张图.先 option ...

  9. <每日 1 OJ> -LeetCode 13 . 罗马数字转正数

    题目: 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值I 1V 5X 10L 50C 100D 500M 1000例如, 罗马数字 2 写做 II ,即为两个并列的 1 ...

  10. abp 中log4net 集成Kafka

    1.安装包 Install-Package log4net.Kafka.Core 2.修改log4net.config 配置文件 <?xml version="1.0" en ...