[LeetCode] 239. Sliding Window Maximum 滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window.
Example:
Input: nums =[1,3,-1,-3,5,3,6,7]
, and k = 3
Output:[3,3,5,5,6,7]
Explanation:
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Note:
You may assume k is always valid, 1 ≤ k ≤ input array's size for non-empty array.
Follow up:
Could you solve it in linear time?
Hint:
- How about using a data structure such as deque (double-ended queue)?
- The queue size need not be the same as the window’s size.
- Remove redundant elements and the queue should store only elements that need to be considered.
这道题给定了一个数组,还给了一个窗口大小k,让我们每次向右滑动一个数字,每次返回窗口内的数字的最大值。难点就在于如何找出滑动窗口内的最大值(这不废话么,求得不就是这个),那么最狂野粗暴的方法就是每次遍历窗口,找最大值呗,OJ 说呵呵哒,no way!我们希望窗口内的数字是有序的,但是每次给新窗口排序又太费时了,所以最好能有一种类似二叉搜索树的结构,可以在 lgn 的时间复杂度内完成插入和删除操作,那么使用 STL 自带的 multiset 就能满足我们的需求,这是一种基于红黑树的数据结构,可以自动对元素进行排序,又允许有重复值,完美契合。所以我们的思路就是,遍历每个数字,即窗口右移,若超过了k,则需要把左边界值删除,这里不能直接删除 nums[i-k],因为集合中可能有重复数字,我们只想删除一个,而 erase 默认是将所有和目标值相同的元素都删掉,所以我们只能提供一个 iterator,代表一个确定的删除位置,先通过 find() 函数找到左边界 nums[i-k] 在集合中的位置,再删除即可。然后将当前数字插入到集合中,此时看若 i >= k-1,说明窗口大小正好是k,就需要将最大值加入结果 res 中,而由于 multiset 是按升序排列的,最大值在最后一个元素,我们可以通过 rbeng() 来取出,参见代码如下:
解法一:
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int> res;
multiset<int> st;
for (int i = ; i < nums.size(); ++i) {
if (i >= k) st.erase(st.find(nums[i - k]));
st.insert(nums[i]);
if (i >= k - ) res.push_back(*st.rbegin());
}
return res;
}
};
我们也可以使用优先队列来做,即最大堆,不过此时我们里面放一个 pair 对儿,由数字和其所在位置组成的,这样我们就可以知道每个数字的位置了,而不用再进行搜索了。在遍历每个数字时,进行 while 循环,假如优先队列中最大的数字此时不在窗口中了,就要移除,判断方法就是将队首元素的 pair 对儿中的 second(位置坐标)跟 i-k 对比,小于等于就移除。然后将当前数字和其位置组成 pair 对儿加入优先队列中。此时看若 i >= k-1,说明窗口大小正好是k,就将最大值加入结果 res 中即可,参见代码如下:
解法二:
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int> res;
priority_queue<pair<int, int>> q;
for (int i = ; i < nums.size(); ++i) {
while (!q.empty() && q.top().second <= i - k) q.pop();
q.push({nums[i], i});
if (i >= k - ) res.push_back(q.top().first);
}
return res;
}
};
题目中的 Follow up 要求我们代码的时间复杂度为 O(n)。提示我们要用双向队列 deque 来解题,并提示我们窗口中只留下有用的值,没用的全移除掉。果然 Hard 的题目我就是不会做,网上看到了别人的解法才明白,解法又巧妙有简洁,膜拜啊。大概思路是用双向队列保存数字的下标,遍历整个数组,如果此时队列的首元素是 i-k 的话,表示此时窗口向右移了一步,则移除队首元素。然后比较队尾元素和将要进来的值,如果小的话就都移除,然后此时我们把队首元素加入结果中即可,参见代码如下:
解法三:
class Solution {
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int> res;
deque<int> q;
for (int i = ; i < nums.size(); ++i) {
if (!q.empty() && q.front() == i - k) q.pop_front();
while (!q.empty() && nums[q.back()] < nums[i]) q.pop_back();
q.push_back(i);
if (i >= k - ) res.push_back(nums[q.front()]);
}
return res;
}
};
类似题目:
Longest Substring with At Most Two Distinct Characters
参考资料:
https://leetcode.com/problems/sliding-window-maximum/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 239. Sliding Window Maximum 滑动窗口最大值的更多相关文章
- [leetcode]239. Sliding Window Maximum滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- 239 Sliding Window Maximum 滑动窗口最大值
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧.你只可以看到在滑动窗口 k 内的数字.滑动窗口每次只向右移动一位.例如,给定 nums = [1,3,-1,-3, ...
- [LeetCode] Sliding Window Maximum 滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- [leetcode] #239 Sliding Window Maximum (Hard)
原题链接 题意: 给定一个数组数字,有一个大小为k的滑动窗口,它从数组的最左边移动到最右边.你只能在窗口看到k个数字.每次滑动窗口向右移动一个位置. 记录每一次窗口内的最大值,返回记录的值. 思路: ...
- leetcode 239 Sliding Window Maximum
这题是典型的堆排序算法,只是比一般的堆算法多了删除的操作,有两件事需要做: 1 用一个hash表存储从输入数组索引到堆数组(用于实现堆的那个数组)所以的映射,以便在需要删除一个元素的时候能迅速定位到堆 ...
- [LeetCode] Sliding Window Median 滑动窗口中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- 【LeetCode】239. Sliding Window Maximum
Sliding Window Maximum Given an array nums, there is a sliding window of size k which is moving fr ...
- 【刷题-LeetCode】239. Sliding Window Maximum
Sliding Window Maximum Given an array nums, there is a sliding window of size k which is moving from ...
- [Leetcode]双项队列解决滑动窗口最大值难题
这道题是从优先队列的难题里面找到的一个题目.可是解法并不是优先队列,而是双项队列deque 其实只要知道思路,这一道题直接写没有太大的问题.我们看看题 给定一个数组 nums,有一个大小为 k 的滑动 ...
随机推荐
- NXP官方ddr_stress_tester工具使用
1.前言 NXP官方提供了一个DDR初始化工具,名称为ddr_stress_tester,该工具具有以下特点: 该工具能通过USB OTG接口与目标板进行连接,通过USB OTG接口完成DDR的初始化 ...
- 重温CLR(十七)程序集加载和反射
本章主要讨论在编译时对一个类型一无所知的情况下,如何在运行时发现类型的信息.创建类型的实例以及访问类型的成员.可利用本章讲述的内容创建动态可扩展应用程序. 反射使用的典型场景一般是由一家公司创建宿主应 ...
- Python教程 | Requests的基本用法
下面我就给大家整理了Requests库的使用方法和细节. 什么是Requests Requests是Python语言编写,基于urllib3,采用Apache2 Licensed开源协议的HTTP库. ...
- Python分页
# -*-coding:utf-8-*- # Author:Ds from django.utils.safestring import mark_safe from django.http.requ ...
- wsl下安装并运行Kafka
0.引言 kafka是一个高性能分布式的MQ,今天我们就来玩玩 1.安装 wget http://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.3.0/kaf ...
- AI2(App Inventor 2)离线版服务器(AI伴侣2.47版)
提供这个版本的原因: 与app.gzjkw.net的源代码版本尽可能的接近,这样导入app.gzjkw.net源文件的时候不会有“该项目由新版App Inventor系统创建,我们仍然尝试将其加载,但 ...
- day 36
目录 pymysql操作mysql 安装 连接 增 删 改 查 索引 为什么使用索引以及索引的作用 类比 索引的本质 索引的底层原理 索引的种类(重点) 主键索引 唯一索引 普通索引 索引的创建 主键 ...
- Springboot将数据存储到数据库当中
1.从前端获取数据,同时存储到use当中 public String login(HttpServletRequest request) { User user = new User(); user. ...
- 最易用的 Android HTTP library
原文:http://dukeland.hk/2012/08/02/the-simplest-android-http-library/ 這次要介紹的是這個來自 James Smith 的 Androi ...
- 莫烦TensorFlow_09 MNIST例子
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...