概率与期望

总结

老师上午几乎是在讲数学课,没有讲什么和\(OI\)有关的题目,所以我就做了一点笔记。

到了下午,老师讲完了有关知识点和经典模型,就开始讲例题了。前两道例题是以前就做过的,所以没有什么问题。后几道例题难度就有所提升了,老师共计讲了\(10\)到例题,有关笔记基本上都记了 ,但是区间翻转排序两题笔记有点缺漏,导致听挂了,还有Deep Dark Forest凸包两题可能在细节上还有一点问题。

有关解题策略,还可以看大佬的博客

知识点

大概的内容就是有关期望和概率的基础概念,重要公式和若干经典问题的解答,以及一些技巧和运用的方法,重要的几个内容如下:

\(1.\) \[\sum_{i=0}^nx^i=\frac{1-x^{n+1}}{1-x}\]
就是等比数列求和公式,只需将等式两边同乘分母化简即可证明。

\(2.\) \[\lim_{n->\infty}\sum_{i=0}^nx^i=\frac{1}{1-x}\tag{0<x<1}\]
利用极限思想即可得到。

\(3.\) \[E(X+Y)=E(X)+E(Y)\]
期望的线性性,对于任意随机变量\(X,Y\)成立,可以利用定义直接证明。

\(4.\) \[P(X=k)=P(X\leq k)-P(X
\leq k-1)\\P(X=k)=P(X\geq k) -P(X\geq k+1)\]
概率的前缀和,后缀和转换,可以用于推导化简。

\(5.\) 发生概率为\(p\)的事件期望在\(\frac{1}{p}\)次后发生。
证明:设随机变量\(X\)代表直到该事件发生时的次数,则有:
\[E(X)=\sum_{i}P(X=i)*i\\=\sum_{i} \left ( P(X\geq i)-P(X\geq i+1) \right )*i\\=\sum_{i=1}^{\infty}((1-p)^{i-1}-(1-p)^{i})*i\\=\sum_{i=0}^{\infty}(1-p)^i=\frac{1}{p}\]

\(6.\) \[E(X)=\sum_{i=1}^{\infty}P(X\geq i)\]
对于离散变量\(X\),可以证明如下:\[E(X)=\sum_{i=1}^{\infty}P(X=i)*i\\=\sum_{i=1}^{\infty}(P(X\geq i)-P(X\geq i+1))*i\\=\sum_{i=1}^{\infty}P(X\geq i)\]

对于经典问题的解答,可以参照这篇博客笔记

例题

例题感觉难度还是有的,也比较切合今天的知识点。但是老师讲的速度比较快,可能对题目理解还不是很透彻。在讲课时,做笔记还是很必要的,并且一定要跟上老师讲课的节奏,以防走神,如果有哪到题的笔记有问题,就先跳过,听懂当前的题,把问题留下来再解决。

以下是例题的简要题解:

\(1.\) 换教室:预处理两两教室之间的最短距离,考虑每一个教师是否申请,进行线性\(dp\)计算最小期望即可。

\(2.\) \(Deep\ Dark\ Forest\):利用公式\(6\)将期望转化为不等式概率求和的形式。然后枚举直径长度限制\(k\),用树形\(dp\)求概率即可。(状态:\(f[x][l]\)代表以\(x\)为根的子树中,最长链长度为\(l\)的概率)

\(3.\) 球染色:设\(f[i]\)代表当前有\(i\)个颜色为\(x\)的点,可以计算当前状态选取数对产生\(1\),\(0\),\(-1\)贡献的概率,化简方程线性递推即可。

\(4.\) 区间翻转:利用期望线性性转换,即求最后第\(i\)个点的取值期望。设\(f[j][0/1]\)代表第\(j\)次操作后,第\(i\)个位置为\(0/1\)的概率,设\(p_i\)代表随机一个区间,包含点\(i\)的概率。利用\(p_i\)来\(dp\)即可,需要矩阵乘法加速递推。

\(5.\) 凸包:先利用期望的线性性进行转换,同时利用点边转换(凸包上的点数等于凸包上的边数),即求边\((i,j)\)在凸包上的概率,同时也是期望,可以根据凸包边的性质来统计。

\(6.\) 单选错位:先利用期望的线性性进行转换,即求每一个位置的数抄错后正确的期望,发现可以直接表示。

\(7.\) \(kill\):先将题目等效转换,对每一个人一一处理,只选没死的人进行开枪操作。设\(f[i][j]\)代表还剩\(i\)个人,前面有\(j\)个人开了枪的概率,根据开枪次数计算概率转移即可。


『正睿OI 2019SC Day1』的更多相关文章

  1. 『正睿OI 2019SC Day8-Day17』

    于是就迎来\(10\)天的自闭考试了,每天写点小总结吧. Day8 第一天就很自闭啊,考题分别是数学题+建模题+图论. 前两道题都没有什么算法,但是难度还是有的,于是就做不太出来,特别是第一题.第二题 ...

  2. 『正睿OI 2019SC Day7』

    简单数论 质因子分解 素性测试 素性测试指的是对一个正整数是否为质数的判定,一般来说,素性测试有两种算法: \(1.\) 试除法,直接尝试枚举因子,时间复杂度\(O(\sqrt n)\). \(2.\ ...

  3. 『正睿OI 2019SC Day5』

    网络流 网络流的定义 一个流网络\(G=(V,E)\)为一张满足以下条件的有向图: 每一条边有一个非负容量,即对于任意\(E\)中的\((u,v)\) , 有\(c(u,v)\geq0\). 如果\( ...

  4. 『正睿OI 2019SC Day4』

    总结 今天是一场欢乐的\(ACM\)比赛,于是我队得到了全场倒数的好排名. 好吧,其实还是怪自己不能怪队友啦.对于\(ACM\),可能最主要的还是经验不足,导致比赛的时候有点紧张.虽然队友为了磕一道题 ...

  5. 『正睿OI 2019SC Day6』

    动态规划 \(dp\)早就已经是经常用到的算法了,于是老师上课主要都在讲题.今天讲的主要是三类\(dp\):树形\(dp\),计数\(dp\),\(dp\)套\(dp\).其中计数\(dp\)是我很不 ...

  6. 『正睿OI 2019SC Day3』

    容斥原理 容斥原理指的是一种排重,补漏的计算思想,形式化的来说,我们有如下公式: \[\left | \bigcup_{i=1}^nS_i \right |=\sum_{i}|S_i|-\sum_{i ...

  7. 『正睿OI 2019SC Day2』

    分治 普通分治 普通分治是指针对序列或平面问题的分治算法. 思想 普通分治的思想是指将一个序列问题或平面问题通过某种划分方式划分为若干个子问题,直到子问题规模足够小,可以直接回答,再通过合并得到原问题 ...

  8. 正睿OI国庆day1

    正睿OI国庆day1 T1 \[ S_n=1*S_{n-1}+1*F_{n-1}+1*F_{n-2}+1*f_{n-1}+1*f_{n-2} \] \[ F_{n}=0*S_{n-1}+1*F_{n- ...

  9. 正睿OI DAY3 杂题选讲

    正睿OI DAY3 杂题选讲 CodeChef MSTONES n个点,可以构造7条直线使得每个点都在直线上,找到一条直线使得上面的点最多 随机化算法,check到答案的概率为\(1/49\) \(n ...

随机推荐

  1. Kubernetes概念之deployment

    一整天一整天的坐在办公室,真的很~~~,懵圈中....,求解救. 本文通过<Kubernetes权威指南>的概念部分学习总结 Deployment作用 Deployment与RC的作用其实 ...

  2. java国际化之时区问题处理

    原文:https://moon-walker.iteye.com/blog/2396035 在国际化的项目中需要处理的日期时间问题主要有两点: 1.日期时间的国际化格式问题处理: 2.日期时间的时区问 ...

  3. HLOJ1361 Walking on the Grid II 矩阵快速幂

    题目分析: 就当是一次记录吧,2013年绍兴市市赛的一题,重现赛当时我想递推可能是矩阵快速幂吧,但是这个递推公式真没推出来(赛后猛如虎系列),这题和第一题有联系又有区别,第一题的递推很简单,dp[i] ...

  4. generator 1(2019年牛客多校第五场B题+十进制矩阵快速幂)

    目录 题目链接 思路 代码 题目链接 传送门 思路 十进制矩阵快速幂. 代码 #include <set> #include <map> #include <deque& ...

  5. CSP 201903-2 24点

    这是上一次考csp时遇到的一道简单的问题,但是当时太菜了没有写出来. 问题描述: 直接上图 解决思路: 标准的表达式求解,可以用符号栈和数值栈来存放运算符和数值,需要注意的是从左到右扫描的时候 遇到 ...

  6. 20180606模拟赛T4——数学游戏

    数学游戏 题目描述: 小T又发脑残了,没错,她又要求奇怪的东西,这次她想知道[X,Y]之间整数有多少可以表示成K个不同的B的幂的和形势.如\(x,y,k,b=15,20,2,2\),则有: \[17= ...

  7. Django 缓存配置的多种方式

    django 的缓存配置有多种方式,主要包含以下几种: 1.开发调试模式 2.内存模式 3.使用文件 4.直接使用数据库 5.使用redis或者memcache 这里主要是记录一下那些不常用,但是在微 ...

  8. ValueError: Dependency on app with no migrations: customuser

    You haven't run manage.py makemigrations customuser to create the migrations for your CustomUser app ...

  9. 2016 ACM/ICPC亚洲区青岛站

    A B C D E F G H I J K L M O O O O     $\varnothing$     $\varnothing$  $\varnothing$  $\varnothing$  ...

  10. React的使用小规范----长期更新

    用this.state控制组件显示,用this.props控制页面业务数据,用this.other保存其他需要的属性,如计时器setInterval的id