import os
import torch
import torchvision
import torch.nn as nn
from torchvision import transforms
from torchvision.utils import save_image # 配置GPU或CPU设置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 超参数设置
latent_size = 64
hidden_size = 256
image_size = 784
num_epochs = 200
batch_size = 100
sample_dir = 'samples' # Create a directory if not exists
if not os.path.exists(sample_dir):
os.makedirs(sample_dir) # Pytorch:transforms的二十二个方法:https://blog.csdn.net/weixin_38533896/article/details/86028509#10transformsNormalize_120
# 对Image数据按通道进行标准化,即先减均值,再除以标准差,注意是 hwc
transform = transforms.Compose([
transforms.ToTensor(),# 将PIL Image或者 ndarray 转换为tensor,并且归一化至[0-1],归一化至[0-1]是直接除以255
transforms.Normalize(mean=(0.5, 0.5, 0.5), # 3 for RGB channels
std=(0.5, 0.5, 0.5))]) # 下载数据,并指定转换形式transform
# MNIST dataset
mnist = torchvision.datasets.MNIST(root='./data/',
train=True,
transform=transform,
download=True)
# 数据加载,按照batch_size大小加载,并随机打乱
# Data loader
data_loader = torch.utils.data.DataLoader(dataset=mnist,
batch_size=batch_size,
shuffle=True)
# 鉴别器
# Discriminator
D = nn.Sequential(
nn.Linear(image_size, hidden_size),
nn.LeakyReLU(0.2),
nn.Linear(hidden_size, hidden_size),
nn.LeakyReLU(0.2),
nn.Linear(hidden_size, 1),
nn.Sigmoid())
# 生成器
# Generator
G = nn.Sequential(
nn.Linear(latent_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, image_size),
nn.Tanh()) # GPU或CPU设置
# Device setting
D = D.to(device)
print(D)
# Sequential((0): Linear(in_features=784, out_features=256, bias=True)
# (1): LeakyReLU(negative_slope=0.2)
# (2): Linear(in_features=256, out_features=256, bias=True)
# (3): LeakyReLU(negative_slope=0.2)
# (4): Linear(in_features=256, out_features=1, bias=True)
# (5): Sigmoid())
G = G.to(device)
print(G)
# Sequential( (0): Linear(in_features=64, out_features=256, bias=True)
# (1): ReLU()
# (2): Linear(in_features=256, out_features=256, bias=True)
# (3): ReLU()
# (4): Linear(in_features=256, out_features=784, bias=True)
# (5): Tanh()) # 二值交叉熵损失函数和优化器设置
# Binary cross entropy loss and optimizer
criterion = nn.BCELoss()
# 优化器设置 ,并传入鉴别器与生成器模型参数和相应的学习率
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.0002)
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.0002) # 规范化处理
def denorm(x):
out = (x + 1) / 2
return out.clamp(0, 1) # 将out张量每个元素的范围限制到区间 [min,max] # 清空上一步的残余更新参数值
def reset_grad():
d_optimizer.zero_grad() # 清空鉴别器的梯度器上一步的残余更新参数值
g_optimizer.zero_grad() # 清空生成器的梯度器上一步的残余更新参数值 # 开始训练
total_step = len(data_loader)
for epoch in range(num_epochs):
for i, (images, _) in enumerate(data_loader):
images = images.reshape(batch_size, -1).to(device) # 创建label
# Create the labels which are later used as input for the BCE loss
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device) # ================================================================== #
# 训练鉴别器 #
# ================================================================== #
# 使用真实图像计算二值交叉熵损失
# Compute BCE_Loss using real images where BCE_Loss(x, y): - y * log(D(x)) - (1-y) * log(1 - D(x))
# Second term of the loss is always zero since real_labels == 1
outputs = D(images)# 真图像输入给鉴别器,并产生鉴别器输出
d_loss_real = criterion(outputs, real_labels) # 计算由真图像输入给鉴别器产生的输出与真实的label间的二值交叉熵损失
real_score = outputs# 鉴别器输出真实图像score值 # Compute BCELoss using fake images
# First term of the loss is always zero since fake_labels == 0
z = torch.randn(batch_size, latent_size).to(device)# 随机生成假图像
fake_images = G(z)# 假图像输入给生成器,并产生生成器输出假值图
outputs = D(fake_images)# 生成器输出假值图给鉴别器鉴别,输出鉴别结果
d_loss_fake = criterion(outputs, fake_labels)# 由随机产生的假图像输入给生成器产生的假图,计算生成器生成的假图输入给鉴别器鉴别输出与假的标签间的二值交叉熵损失
fake_score = outputs# 鉴别器输出假图像score值 # 反向传播与优化
d_loss = d_loss_real + d_loss_fake#真图像输入给鉴别器产生的输出与真实的label间的二值交叉熵损失和假图输入给鉴别器鉴别输出与假的标签间的二值交叉熵损失
# 重置梯度求解器
reset_grad()
# 反向传播
d_loss.backward()
# 将参数更新值施加到鉴别器 model的parameters上
d_optimizer.step() # ================================================================== #
# 训练生成器 #
# ================================================================== #
# 计算假图像的损失
# Compute loss with fake images
z = torch.randn(batch_size, latent_size).to(device)# 随机生成假图像
fake_images = G(z)# 假图像输入给生成器,并产生生成器输出假值图
outputs = D(fake_images)# 生成器输出假值图给鉴别器鉴别,输出鉴别结果 # We train G to maximize log(D(G(z)) instead of minimizing log(1-D(G(z)))
# For the reason, see the last paragraph of section 3. https://arxiv.org/pdf/1406.2661.pdf
g_loss = criterion(outputs, real_labels)# 由随机产生的假图像输入给生成器产生的假图,计算生成器生成的假图输入给鉴别器鉴别输出与真的标签间的二值交叉熵损失 # 反向传播与优化
# 重置梯度求解器
reset_grad()
# 反向传播
g_loss.backward()
# 将参数更新值施加到生成器 model的parameters上
g_optimizer.step()
# 每迭代一定步骤,打印结果值
if (i + 1) % 200 == 0:
print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}, D(x): {:.2f}, D(G(z)): {:.2f}'
.format(epoch, num_epochs, i + 1, total_step, d_loss.item(), g_loss.item(),
real_score.mean().item(), fake_score.mean().item()))
# 保存真图像
# Save real images
if (epoch + 1) == 1:
images = images.reshape(images.size(0), 1, 28, 28)
save_image(denorm(images), os.path.join(sample_dir, 'real_images.png')) # 保存假或采样图像
# Save sampled images
fake_images = fake_images.reshape(fake_images.size(0), 1, 28, 28)
save_image(denorm(fake_images), os.path.join(sample_dir, 'fake_images-{}.png'.format(epoch + 1))) # 保存以训练好的生成器与鉴别器模型
# Save the model checkpoints
torch.save(G.state_dict(), 'G.ckpt')
torch.save(D.state_dict(), 'D.ckpt')

  

Generative Adversarial Network (GAN) - Pytorch版的更多相关文章

  1. GAN Generative Adversarial Network 生成式对抗网络-相关内容

    参考: https://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for=pc Generative Adversari ...

  2. Face Aging with Conditional Generative Adversarial Network 论文笔记

    Face Aging with Conditional Generative Adversarial Network 论文笔记 2017.02.28  Motivation: 本文是要根据最新的条件产 ...

  3. 生成对抗网络(Generative Adversarial Network)阅读笔记

    笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...

  4. ASRWGAN: Wasserstein Generative Adversarial Network for Audio Super Resolution

    ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Sprin ...

  5. Speech Super Resolution Generative Adversarial Network

    博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito K ...

  6. DeepPrivacy: A Generative Adversarial Network for Face Anonymization阅读笔记

    DeepPrivacy: A Generative Adversarial Network for Face Anonymization ISVC 2019 https://arxiv.org/pdf ...

  7. 论文阅读之:Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

    Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network  2016.10.23 摘要: ...

  8. 论文阅读:Single Image Dehazing via Conditional Generative Adversarial Network

    Single Image Dehazing via Conditional Generative Adversarial Network Runde Li∗ Jinshan Pan∗ Zechao L ...

  9. 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]

    一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...

随机推荐

  1. 《挑战30天C++入门极限》C/C++中字符串常量的不相等性及字符串的Copy

        C/C++中字符串常量的不相等性及字符串的Copy #include <iostream>    void main(void)  {      if("test&quo ...

  2. 常用命令备忘 xargs

    xargs 作为使用率很高的命令,但是长久不用就会模糊了记忆,所以要记录下来. 获取所有的cobbler相关的布尔值然后全部设置为真 getsebool -a|grep cobbler|awk '{p ...

  3. P1057 传球游戏——小学生dp

    P1057 传球游戏 设f[i][j]为第i次传到j的方案数: f[0][1]=1; 单独处理开头和结尾: #include<cstdio> #include<cstring> ...

  4. C语言 memset函数及其用法

    定义 void *memset(void *s, int c, unsigned long n); 描述 将指针变量 s 所指向的前 n 字节的内存单元用一个“整数” c 替换,注意 c 是 int ...

  5. JS 中的prototype、__proto__与constructor

    我们需要牢记两点: ①__proto__和constructor属性是对象所独有的: ② prototype属性是函数所独有的,因为函数也是一种对象,所以函数也拥有__proto__和construc ...

  6. spaceclaim脚本(线生成面体)

    #新建一个列表,用来保存修剪曲线(PS:修建曲线的意思是开始点和结束点不在一起,圆就不属于修建曲线) #注意和Line,Circle类型等的区别 curves = List[ITrimmedCurve ...

  7. Spring boot 事务Transactional

    开启事务只需要加上注解@Transactional即可 // 默认情况下数据库的事务作用范围是在JapRepository 的crud上 // save 一旦执行成功,就会进行提交 // 开启事务后遇 ...

  8. Windows 实例远程桌面报错“没有远程桌面授权服务器可以提供许可证”

    参考阿里云帮助文档: https://help.aliyun.com/knowledge_detail/40859.html?spm=5176.10695662.1996646101.searchcl ...

  9. java输出程序运行时间

    做了一个MapReduce的小练习,想测试一下程序运行时间: 代码: long start = System.currentTimeMillis(); /*运行的程序主体*/ long end = S ...

  10. RecyclerView 实现快速滚动 (转)

    RecyclerView 实现快速滚动 极小光  简书作者   简评:Android Support Library 26 中终于实现了一个等待已久的功能:RecyclerView 的快速滚动. An ...