题目链接

传送门

题意

在一张\(n\times m\)的矩阵里面,你每次可以往左右和下三个方向移动(不能回到上一次所在的格子),\(1\)表示这个位置是墙,\(0\)为空地。

现在有\(q\)次操作,操作一是将\((x,y)\)这个位置的状态取反,操作二问你从\((1,x)\)走到\((n,y)\)的方案数。

思路

首先我们考虑不带修改操作时求方案数:

我们发现从第\(i-1\)行到第\(i\)行的\(j\)这个位置只能通过\((i-1,j)\)到达,因此可以从第\(i-1\)行到\((i,j)\)的位置只能是与\((i-1,j)\)的路径上不能有墙的点,从而我们可以得知\(dp[x][y]=\sum\limits_{i=L}^{R}dp[x-1][i]\),其中\(dp[x][y]\)表示到达\((x,y)\)这个位置的方案数,\(L,R\)表示与\((x-1,y)\)联通的左右端点。

我们发现这是一个递推式,因此我们可以用矩阵乘法来维护这个东西,我们用一个例子来理解:

假设要从第\(i-1\)行到达第\(i\)行,且第\(i-1\)行的状态为\("10010"\),那么将递推式表示成矩阵乘法为:

\[\left(
\begin{matrix}
dp[i][1] & dp[i][2] & dp[i][3] & dp[i][4] & dp[i][5]
\end{matrix}
\right)=
\left(
\begin{matrix}
dp[i-1][1] & dp[i-1][2] & dp[i-1][3] & dp[i-1][4] & dp[i-1][5]
\end{matrix}
\right)
\times
\left(
\begin{matrix}
0 & 0 & 0 & 0 & 1\\
0 & 1 & 1 & 0 & 1\\
0 & 1 & 1 & 0 & 1\\
0 & 0 & 0 & 0 & 1\\
0 & 0 & 0 & 0 & 1
\end{matrix}
\right)
\]

得到了相邻两项的递推式那么从第\(1\)行到第\(n\)行的答案那么答案就是\(dp[n+1][y]\),为什么是\(n+1\)而不是\(n\)呢?因为如果是\(n\),那么得到的只有从\(n-1\)行到达这个位置的方案数,缺少了从第\(n\)行的其他位置到达这个位置的方案数。

那么待修改操作的我们该怎么处理呢?

我们发现修改一个点的位置只会影响当前行与下一行的系数矩阵,并不会影响其他行直接的系数矩阵,如果我们暴力修改然后暴力求解递推式那么对于每次操作都要从第\(1\)行递推到第\(n\)行,那么每次修改操作复杂度为\(O(1)\),求解复杂度为\(O(nm^3)\),很明显不能满足题目给的时限。

我们发现如果我们用线段树来维护这个东西,那么每次修改的复杂度为\(O(m^3long(n))\),求解复杂度为\(O(1)\),那么总体复杂度就比上面上了一个\(n\)。

而维护方式也很简单,定义线段树的每个结点都是一个系数矩阵,表示从结点代表的左端点\((l)\)到右端点\((r)\)\(+1\)的递推式中的矩阵相乘,而且系数矩阵中的\(sum[i][j]\)表示的是从\(l\)的第\(i\)列到\(r+1\)的第\(j\)列的方案数,最后答案为根结点的\(sum[x][y]\)。

代码

#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson (rt<<1)
#define rson (rt<<1|1)
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("/home/dillonh/CLionProjects/Dillonh/in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0) const double eps = 1e-8;
const int mod = 1000000007;
const int maxn = 50000 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; int n, m, q, op, x, y;
int mp[maxn][11]; struct node {
int l, r, sum[11][11]; node operator * (const node& a) const {
node c;
for(int i = 1; i <= m; ++i) {
for(int j = 1; j <= m; ++j) {
c.sum[i][j] = 0;
for(int k = 1; k <= m; ++k) {
c.sum[i][j] = (c.sum[i][j] + 1LL * sum[i][k] * a.sum[k][j] % mod) % mod;
}
}
}
return c;
}
}segtree[maxn<<2]; void push_up(int rt) {
int l = segtree[rt].l, r = segtree[rt].r;
segtree[rt] = segtree[lson] * segtree[rson];
segtree[rt].l = l, segtree[rt].r = r;
} void build(int rt, int l, int r) {
segtree[rt].l = l, segtree[rt].r = r;
if(l == r) {
for(int i = 1; i <= m; ++i) {
for(int j = 1; j <= m; ++j) segtree[rt].sum[i][j] = 0;
for(int j = i; j <= m && !mp[l][j]; ++j) segtree[rt].sum[i][j] = 1;
for(int j = i; j >= 1 && !mp[l][j]; --j) segtree[rt].sum[i][j] = 1;
}
return;
}
int mid = (l + r) >> 1;
build(lson, l, mid);
build(rson, mid + 1, r);
push_up(rt);
} void update(int rt, int pos) {
if(segtree[rt].l == segtree[rt].r) {
for(int i = 1; i <= m; ++i) {
for(int j = 1; j <= m; ++j) segtree[rt].sum[i][j] = 0;
for(int j = i; j <= m && !mp[pos][j]; ++j) segtree[rt].sum[i][j] = 1;
for(int j = i; j >= 1 && !mp[pos][j]; --j) segtree[rt].sum[i][j] = 1;
}
return;
}
int mid = (segtree[rt].l + segtree[rt].r) >> 1;
if(pos <= mid) update(lson, pos);
else update(rson, pos);
push_up(rt);
} int main() {
#ifndef ONLINE_JUDGE
FIN;
#endif
scanf("%d%d%d", &n, &m, &q);
for(int i = 1; i <= n; ++i) {
for(int j = 1; j <= m; ++j) {
scanf("%1d", &mp[i][j]);
}
}
build(1, 1, n);
while(q--) {
scanf("%d%d%d", &op, &x, &y);
if(op == 1) {
mp[x][y] ^= 1;
update(1, x);
} else {
printf("%d\n", segtree[1].sum[x][y]);
}
}
return 0;
}

MAZE(2019年牛客多校第二场E题+线段树+矩阵乘法)的更多相关文章

  1. 2019年牛客多校第二场 H题Second Large Rectangle

    题目链接 传送门 题意 求在\(n\times m\)的\(01\)子矩阵中找出面积第二大的内部全是\(1\)的子矩阵的面积大小. 思路 处理出每个位置往左连续有多少个\(1\),然后对每一列跑单调栈 ...

  2. Kth Minimum Clique(2019年牛客多校第二场D题+k小团+bitset)

    目录 题目链接 题意 思路 代码 题目链接 传送门 题意 找第\(k\)小团. 思路 用\(bitset\)来标记每个结点与哪些结点直接有边,然后进行\(bfs\),在判断新加入的点与现在有的点是否都 ...

  3. 2019年牛客多校第二场 F题Partition problem 爆搜

    题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...

  4. 2019年牛客多校第一场B题Integration 数学

    2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...

  5. 2019牛客多校第二场H题(悬线法)

    把以前的题补补,用悬线求面积第二大的子矩形.我们先求出最大子矩阵的面积,并记录其行三个方向上的悬线长度.然后排除这个矩形,记得还得特判少一行或者少一列的情况 #include <bits/std ...

  6. Cutting Bamboos(2019年牛客多校第九场H题+二分+主席树)

    题目链接 传送门 题意 有\(n\)棵竹子,然后有\(q\)次操作,每次操作给你\(l,r,x,y\),表示对\([l,r]\)区间的竹子砍\(y\)次,每次砍伐的长度和相等(自己定砍伐的高度\(le ...

  7. 2019年牛客多校第一场 I题Points Division 线段树+DP

    题目链接 传送门 题意 给你\(n\)个点,每个点的坐标为\((x_i,y_i)\),有两个权值\(a_i,b_i\). 现在要你将它分成\(\mathbb{A},\mathbb{B}\)两部分,使得 ...

  8. 2019年牛客多校第一场 H题XOR 线性基

    题目链接 传送门 题意 求\(n\)个数中子集内所有数异或为\(0\)的子集大小之和. 思路 对于子集大小我们不好维护,因此我们可以转换思路变成求每个数的贡献. 首先我们将所有数的线性基的基底\(b\ ...

  9. 2018牛客多校第二场a题

    一个人可以走一步或者跳x步,但不能连着跳,问到这个区间里有几种走法 考虑两种状态  对于这一点,我可以走过来,前面是怎么样的我不用管,也可以跳过来但是,跳过来必须保证前一步是走的 dp[i][0]表示 ...

随机推荐

  1. Ubuntu安装完搜狗后,更改ctrl+shift切换输入法

    1.打开搜狗设置 2.更改Scroll between Input Method即可,我设置成了 ALT_SUPER(Win键)

  2. asp.net mvc移除X-AspNet-Version、X-AspNetMvc-Version、Server

    asp.net mvc程序部署到IIS,,返回的HTTP头中包含Server, X-Powered-By, 和 X-AspNet-Version.X-AspNet-Version信息. 这些信息有时给 ...

  3. CAP带你轻松玩转ASP.NETCore消息队列

    CAP是什么? CAP是由我们园子里的杨晓东大神开发出来的一套分布式事务的决绝方案,是.Net Core Community中的第一个千星项目(目前已经1656 Start),具有轻量级.易使用.高性 ...

  4. Python 中把一个list 列表分组/分块

    比如:将list:[1,2,3,4,5,6,7,8,9]按照下标顺序分成3组:[1,2,3] [4,5,6] [7,8,9]或分成5组:[1,2,] [3, 4] [5,6] [7, 8] [ 9 ] ...

  5. Eureka概述

    1:Eureka是什么 Eureka是Spring Cloud Netflix的一个子模块,也是核心模块之一.Eureka是一个基于REST的服务,用于定位服务,以及·实现云端中间层服务发现和故障转移 ...

  6. FZU 1759 题解 欧拉降幂

    本题考点:欧拉降幂 Super A^B mod C Given A,B,C, You should quickly calculate the result of A^B mod C. (1<= ...

  7. Prometheus 告警分配到指定接收组

    Prometheus 告警分配到指定接收组 route属性用来设置报警的分发策略,它是一个树状结构,按照深度优先从左向右的顺序进行匹配. 主要处理流程:1. 接收到Alert,根据labels判断属于 ...

  8. Kubectl 的替代品:kubeman

    周末闲逛 Twitter 时,发现一个很有意思的小工具叫 kubeman,野心倒是不小,励志成为 kubectl 的替代品,用于实时监控和管理 kubernetes 集群,还可以调试与 Istio 相 ...

  9. Docker核心组件的关系

  10. Mybatis系列(一)— 处理冲突字符

    在Mybatis的配置文件中编写SQL经常会遇到字符冲突问题 where或者having中使用"<"过滤,Mybatis xml解析器将其当做配置的开始标签处理: " ...