E-value:

The E-value provides information about the likelihood that a given sequence match is purely by chance. The lower the E-value, the less likely the database match is a result of random chance and therefore the more significant the match is.

Empirical interpretation of the E-value is as follows:

If E-value < 1e-50 (or 1 X 10-50), there should be an extremely high confidence that the database match is a result of homologous relationships.

If E-value is between 0.01 and 1e-50, the match can be considered a result of homology.

If E-value is between 10 and 0.01, the match is considered not significant, but may hint at a tentative remote homology relationship. Additional evidence is needed to confirm the tentative relationship.

If E-value > 10, the sequences under consideration are either unralated or related by extremely distant realtionships that fall below the limit of detection with the current method.

Because the E-value is proportionally affected by the database size, an obvious problem is that as the database grows, the E-value for a given sequence match also increases.

Because the genuine evolutionary relationship beween the two sequence remains constant, the decrease in credibility of the sequence match as the database grows means that one may "lose" previously detected homologs as the database enlarges. Thus, an alternative to E-value calculations is needed.

The E-value is very important, the lower the better

bitscore:

A bitscore is another prominant statistical indicator used in addition to the E-value in a BLAST output. The bitscore measures sequence similarity independent of query sequence length and database size and is normalized based on the raw pairwise alignment score. The bitscore (S) is determined by the following formula: S = (λ * S - lnK) / ln2  where λ is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix used. Clearly, the bitscore (S) is linearly related to the raw alignment score (S). Thus, the higher the bit score, the more highly significant the match is. The bit score provides a constant statistical indicator for  searching different databases of different size or for searching the same database at different times as the database enlarges.

identity:

Identity 35% means that 35% of AA in your sequence match to other sequences in database, There isn't something like "acceptable percentage". It always depends on what you are looking for:

If you have unkown protein sequence and you would like to know the homology sequences, information about identity (even 35%) is valuable.

If you have known protein and you need to confirm the sequence, the identity 35% is small and may suggest that something went wrong during your analysis.

E-value identity bitscore的更多相关文章

  1. ASP.NET Core 之 Identity 入门(一)

    前言 在 ASP.NET Core 中,仍然沿用了 ASP.NET里面的 Identity 组件库,负责对用户的身份进行认证,总体来说的话,没有MVC 5 里面那么复杂,因为在MVC 5里面引入了OW ...

  2. ASP.NET Core 之 Identity 入门(三)

    前言 在上一篇文章中,我们学习了 CookieAuthentication 中间件,本篇的话主要看一下 Identity 本身. 最早2005年 ASP.NET 2.0 的时候开始, Web 应用程序 ...

  3. ASP.NET Core 之 Identity 入门(二)

    前言 在 上篇文章 中讲了关于 Identity 需要了解的单词以及相对应的几个知识点,并且知道了Identity处在整个登入流程中的位置,本篇主要是在 .NET 整个认证系统中比较重要的一个环节,就 ...

  4. 从Membership 到 .NET4.5 之 ASP.NET Identity

    我们前面已经讨论过了如何在一个网站中集成最基本的Membership功能,然后深入学习了Membership的架构设计.正所谓从实践从来,到实践从去,在我们把Membership的结构吃透之后,我们要 ...

  5. TSQL Identity 用法全解

    Identity是标识值,在SQL Server中,有ID列,ID属性,ID值,ID列的值等术语. Identity属性是指在创建Table时,为列指定的Identity属性,其语法是:column_ ...

  6. MVC5 - ASP.NET Identity登录原理 - Claims-based认证和OWIN

    在Membership系列的最后一篇引入了ASP.NET Identity,看到大家对它还是挺感兴趣的,于是来一篇详解登录原理的文章.本文会涉及到Claims-based(基于声明)的认证,我们会详细 ...

  7. ASP.NET Identity入门系列教程(一) 初识Identity

    摘要 通过本文你将了解ASP.NET身份验证机制,表单认证的基本流程,ASP.NET Membership的一些弊端以及ASP.NET Identity的主要优势. 目录 身份验证(Authentic ...

  8. 列属性:RowGUIDCol、Identity 和 not for replication

    Table Column有两个特殊的属性RowGUIDCol 和 Identity,用于标记数据列: $ROWGUID 用于引用被属性 RowGUIDCol 标识的UniqueIdentifier 类 ...

  9. SQL Server 合并复制遇到identity range check报错的解决

        最近帮一个客户搭建跨洋的合并复制,由于数据库非常大,跨洋网络条件不稳定,因此只能通过备份初始化,在初始化完成后向海外订阅端插入数据时发现报出如下错误: Msg 548, Level 16, S ...

随机推荐

  1. openresty 报错:lua entry thread aborted: runtime error

    [1]问题现象 (1)本地openresty系统 (2)报错信息 2019/09/10 08:13:55 [error] 2385#2385: *4 lua entry thread aborted: ...

  2. windows远程桌面无法拷贝文件的问题与解决方法

    在开发完往windows服务器上部署系统或者给系统打补丁的时候,都会需要远程桌面的双向拷贝文件功能. 但是有些时候却会发现没有办法拷贝文件,原因主要有两个. 01 远程桌面的剪贴板设置 一个是在远程桌 ...

  3. Android Studio Analyze APK 一直显示 Parsing Manifest探因及解决

    一.背景 大家都知道,Android Studio开发工具自带了Analyze Apk,可以很方便的分析Apk文件.具体位于菜单build >> Analyze APK...路径下,点击后 ...

  4. MySQL 中获取用户表、用户视图、用户表中列信息

    直接贴代码了: /// <summary> /// MySql 数据库维护中心 /// </summary> public class MySqlDbMaintenance:D ...

  5. C# 删除文件到回收站

    首先添加Microsoft.VisualBasic引用 程序中引用 Microsoft.VisualBasic.FileIO 来进行处理 Console.WriteLine("删除文件到回收 ...

  6. 基于FlexBox的无约束自适应

    全手打原创,转载请标明出处:https://www.cnblogs.com/dreamsqin/p/11972664.html,多谢,=.=~ 一.背景描述   对于通用型带过滤条件的列表查询项目中, ...

  7. Centos7/Ubuntu 初始化硬盘分区、挂载

    刚刚在腾讯云买了一台服务器,刚买的服务器的数据盘都是需要自己来分区的,下面就记录一下操作. 通过命令fdisk-l查看硬盘信息 可以看到有两块硬盘/dev/vda和/dev/vdb,启动vda是系统盘 ...

  8. [转] Performance — 前端性能监控利器

    timing (PerformanceTiming) 从输入url到用户可以使用页面的全过程时间统计,会返回一个PerformanceTiming对象,单位均为毫秒 按触发顺序排列所有属性:(更详细标 ...

  9. [世预赛] 中国vs关岛,关岛实力有限 国足或许可以赢其10个球,比分预测 10:0,8:0,13:0

    [世预赛] 中国vs关岛 开赛时间:2019-10-10 20:00 继5比0大胜马尔代夫之后,国足迎来世预赛40强赛的第二场比赛,再次向世界杯发起冲击.10月10日,国足在广州迎战神秘之旅关岛. 1 ...

  10. java--String与int相互转换

    字符串与int类型的互相转换 String ---> int //方式一:Integer(String s) //demo: Integer i = new Integer("10&q ...