E-value identity bitscore
E-value:
The E-value provides information about the likelihood that a given sequence match is purely by chance. The lower the E-value, the less likely the database match is a result of random chance and therefore the more significant the match is.
Empirical interpretation of the E-value is as follows:
If E-value < 1e-50 (or 1 X 10-50), there should be an extremely high confidence that the database match is a result of homologous relationships.
If E-value is between 0.01 and 1e-50, the match can be considered a result of homology.
If E-value is between 10 and 0.01, the match is considered not significant, but may hint at a tentative remote homology relationship. Additional evidence is needed to confirm the tentative relationship.
If E-value > 10, the sequences under consideration are either unralated or related by extremely distant realtionships that fall below the limit of detection with the current method.
Because the E-value is proportionally affected by the database size, an obvious problem is that as the database grows, the E-value for a given sequence match also increases.
Because the genuine evolutionary relationship beween the two sequence remains constant, the decrease in credibility of the sequence match as the database grows means that one may "lose" previously detected homologs as the database enlarges. Thus, an alternative to E-value calculations is needed.
The E-value is very important, the lower the better
bitscore:
A bitscore is another prominant statistical indicator used in addition to the E-value in a BLAST output. The bitscore measures sequence similarity independent of query sequence length and database size and is normalized based on the raw pairwise alignment score. The bitscore (S) is determined by the following formula: S = (λ * S - lnK) / ln2 where λ is the Gumble distribution constant, S is the raw alignment score, and K is a constant associated with the scoring matrix used. Clearly, the bitscore (S) is linearly related to the raw alignment score (S). Thus, the higher the bit score, the more highly significant the match is. The bit score provides a constant statistical indicator for searching different databases of different size or for searching the same database at different times as the database enlarges.
identity:
Identity 35% means that 35% of AA in your sequence match to other sequences in database, There isn't something like "acceptable percentage". It always depends on what you are looking for:
If you have unkown protein sequence and you would like to know the homology sequences, information about identity (even 35%) is valuable.
If you have known protein and you need to confirm the sequence, the identity 35% is small and may suggest that something went wrong during your analysis.
E-value identity bitscore的更多相关文章
- ASP.NET Core 之 Identity 入门(一)
前言 在 ASP.NET Core 中,仍然沿用了 ASP.NET里面的 Identity 组件库,负责对用户的身份进行认证,总体来说的话,没有MVC 5 里面那么复杂,因为在MVC 5里面引入了OW ...
- ASP.NET Core 之 Identity 入门(三)
前言 在上一篇文章中,我们学习了 CookieAuthentication 中间件,本篇的话主要看一下 Identity 本身. 最早2005年 ASP.NET 2.0 的时候开始, Web 应用程序 ...
- ASP.NET Core 之 Identity 入门(二)
前言 在 上篇文章 中讲了关于 Identity 需要了解的单词以及相对应的几个知识点,并且知道了Identity处在整个登入流程中的位置,本篇主要是在 .NET 整个认证系统中比较重要的一个环节,就 ...
- 从Membership 到 .NET4.5 之 ASP.NET Identity
我们前面已经讨论过了如何在一个网站中集成最基本的Membership功能,然后深入学习了Membership的架构设计.正所谓从实践从来,到实践从去,在我们把Membership的结构吃透之后,我们要 ...
- TSQL Identity 用法全解
Identity是标识值,在SQL Server中,有ID列,ID属性,ID值,ID列的值等术语. Identity属性是指在创建Table时,为列指定的Identity属性,其语法是:column_ ...
- MVC5 - ASP.NET Identity登录原理 - Claims-based认证和OWIN
在Membership系列的最后一篇引入了ASP.NET Identity,看到大家对它还是挺感兴趣的,于是来一篇详解登录原理的文章.本文会涉及到Claims-based(基于声明)的认证,我们会详细 ...
- ASP.NET Identity入门系列教程(一) 初识Identity
摘要 通过本文你将了解ASP.NET身份验证机制,表单认证的基本流程,ASP.NET Membership的一些弊端以及ASP.NET Identity的主要优势. 目录 身份验证(Authentic ...
- 列属性:RowGUIDCol、Identity 和 not for replication
Table Column有两个特殊的属性RowGUIDCol 和 Identity,用于标记数据列: $ROWGUID 用于引用被属性 RowGUIDCol 标识的UniqueIdentifier 类 ...
- SQL Server 合并复制遇到identity range check报错的解决
最近帮一个客户搭建跨洋的合并复制,由于数据库非常大,跨洋网络条件不稳定,因此只能通过备份初始化,在初始化完成后向海外订阅端插入数据时发现报出如下错误: Msg 548, Level 16, S ...
随机推荐
- 【须弥SUMERU】分布式安全服务编排实践
一.概要 1.分布式安全服务编排概念 2.须弥(Sumeru)关键实现思路 3.应用场景 二.前言 在笔者看来,安全防御的本质之一是增加攻击者的攻击成本,尤其是时间成本.那么从防御的角度来说,如何尽早 ...
- php 使用 wangeditor3 图片上传
就在最近,公司让我写一个后台,其中用到了富文本编辑器.自从这个富文本的出现 我就慢慢的进入了一个坑,起初不知道用什么编辑器好,看了好多好多,最后选择了.这个 wangeditor3.个人认为这个富文本 ...
- python 练习题:小明的成绩从去年的72分提升到了今年的85分,请计算小明成绩提升的百分点
# -*- coding: utf-8 -*- # 小明的成绩从去年的72分提升到了今年的85分,请计算小明成绩提升的百分点,并用字符串格式化显示出'xx.x%',只保留小数点后1位. s1 = 72 ...
- C# vb .NET读取识别条形码线性条码CODE93
code93是比较常见的条形码编码规则类型的一种.如何在C#,vb等.NET平台语言里实现快速准确读取该类型条形码呢?答案是使用SharpBarcode! SharpBarcode是C#快速高效.准确 ...
- 第一阶段:Java基础 1.JAVA开发介绍---1.常用的DOS命令
一,DOS使用常识 DOS的概况:DOS(Disk Operating System)是一个使用得十分广泛的磁盘操作系统.DOS的概况 常见的DOS有两种:IBM公司的PC-DOS和微软公司的MS-D ...
- rabbitMq 学习笔记(一)
消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,流量削锋等问题 实现高性能,高可用,可伸缩和最终一致性架构. RabbitMQ 是采用 Erlang 语言实现 AMQP (Adva ...
- Bootstrap初始化过程源码分析--netty客户端的启动
Bootstrap初始化过程 netty的客户端引导类是Bootstrap,我们看一下spark的rpc中客户端部分对Bootstrap的初始化过程 TransportClientFactory.cr ...
- 实现HTML调用打开本地软件文件
有时候我们想要实现一个功能,就是在HTML页面点击一个链接就能调用打开本地可执行文件.就像腾讯QQ.迅雷这种. 而实现这种功能其实也很简单,就是需要我们添加修改注册表,实现自定义URL Protoco ...
- Linux Firewalld 基础实例
本次是一个Firewalld的基础操作实例,利用Firewalld图形操作界面进行访问控制操作. 实验拓扑 需求分析 首先拓扑涉及到两个区域,这里使用work和public区域,分别做相应的规则. 1 ...
- flask的客户端服务端
1.首先要进行后端与前端的连接有get 和post请求 get请求是直接在网页上打出已将定义好的网址 if __name__ == '__main__': app.run(host="loc ...