洛谷 P5057 [CQOI2006]简单题 题解
P5057 [CQOI2006]简单题
题目描述
有一个 n 个元素的数组,每个元素初始均为 0。有 m 条指令,要么让其中一段连续序列数字反转——0 变 1,1 变 0(操作 1),要么询问某个元素的值(操作 2)。 例如当 n = 20 时,10 条指令如下:
输入格式
第一行包含两个整数 n, m,表示数组的长度和指令的条数; 以下 m 行,每行的第一个数 t 表示操作的种类:
若 t = 1,则接下来有两个数 L, R,表示区间 [L, R] 的每个数均反转; 若 t = 2,则接下来只有一个数 i,表示询问的下标。
输出格式
每个操作 2 输出一行(非 0 即 1),表示每次操作 2 的回答。
输入输出样例
输入 #1
20 10
1 1 10
2 6
2 12
1 5 12
2 6
2 15
1 6 16
1 11 17
2 12
2 6
输出 #1
1
0
0
0
1
1
说明/提示
对于 50% 的数据,\(1 ≤ n ≤ 10^3\),$ 1 ≤ m ≤ 10^4$; 对于 100% 的数据,\(1 ≤ n ≤ 10^5\), \(1 ≤ m ≤ 5 × 10^5\),保证 L ≤ R。
【树状数组】
【思路】
树状数组
【题目大意】
区间反转和单点询问
【题目分析】
区间反转我首先想到了是线段树
用lazy标记某个区间反转过几次
但是我是抱着练习树状数组的目的
来做的这道题
所以必须用树状数组做!!!
不过树状数组该怎么办呢?
难不成枚举每一个点然后修改?
不对
这个时候情不自禁想到了那个优美的东西
差分
类似树状数组模板2的方法
差分一下下就可以很轻松标记翻转次数了
【核心思路】
树状数组维护差分数组
差分数组修改区间
只需要在区间左端点加上修改的值
在右端点之后减去修改的值就好了
求某个位置上的值
就是这个位置之前(包括这个位置)的和
也符合树状数组里面的sum
就不需要做差了
最后按照%2来输出就好了
因为翻转两次之后会回到原来的情况
【思路】
#include<iostream>
#include<cstdio>
#define int long long
using namespace std;
const int Max = 100006;
int a[Max];
int n,m;
int read()
{
int sum = 0,fg = 1;
char c = getchar();
while(c < '0' || c > '9')
{
if(c == '-')fg = -1;
c = getchar();
}
while(c >= '0' && c <= '9')
{
sum = sum * 10 + c - '0';
c = getchar();
}
return sum * fg;
}
int lowbit(int x)
{
return x & -x;
}
void add(int x,int y)
{
while(x <= n)
{
a[x] += y;
x += lowbit(x);
}
}
int sum(int x)
{
int ans = 0;
while(x > 0)
{
ans += a[x];
x -= lowbit(x);
}
return ans;
}
signed main()
{
n = read(),m = read();
for(register int i = 1;i <= m;++ i)
{
int t = read();
if(t == 1)
{
int l = read(),r = read();
add(l,1);
add(r + 1,-1);
}
else
{
int qwq = read();
cout << sum(qwq) % 2 << endl;
}
}
return 0;
}
【线段树】
【思路】
线段树
首先感谢@大魔鬼灿灿 巨佬帮我滑鼠标
用树状数组做过了,但是还是可以用线段树做的
所以也拿线段树来做回顾一下线段树,
然后没想到调试了两个小时
【核心思路】
sum记录这个点被修改的次数
因为是区间修改和单点查询
所以线段树中只要不是叶子节点的sum就不需要求了
只用来lazy标记就可以了
然后该下放到叶子节点的时候就下发好了
最后输出记录的修改次数%2
【注意事项】
不管不是叶子节点的sum没问题
但是有的修改的时候却是单点修改
所以该sum++还是得sum++的
把全部节点的sum都当叶子节点的来处理
加上修改的次数
也就是lazy值就好了
【完整代码】
#include<iostream>
#include<cstdio>
#define lson (k << 1)
#define rson (k << 1 | 1)
using namespace std;
int read()
{
int sum = 0,fg = 1;
char c = getchar();
while(c < '0' || c > '9'){if(c == '-')fg = -1;c = getchar();}
while(c >= '0' && c <= '9'){sum = sum * 10 + c - '0';c = getchar();}
return sum * fg;
}
const int Max = 100004;
struct node
{
int l,r;
int lazy;
int sum;
}a[Max << 2];
int n,m;
int opx,opl,opr;
void build(int k,int l,int r)
{
a[k].l = l;a[k].r = r;
if(l == r)
return;
int mid = (l + r) >> 1;
build(lson,l,mid);
build(rson,mid + 1,r);
return;
}
void down(int k)
{
if(a[k].lazy)
{
a[lson].sum += a[k].lazy;
a[rson].sum += a[k].lazy;
a[lson].lazy += a[k].lazy;
a[rson].lazy += a[k].lazy;
a[k].lazy = 0;
}
}
void change(int k)
{
if(opl <= a[k].l && opr >= a[k].r)
{
a[k].lazy ++;
a[k].sum++;
return;
}
down(k);
int mid = (a[k].l + a[k].r) >> 1;
if(opl <= mid)change(lson);
if(opr > mid)change(rson);
a[k].sum = a[lson].sum + a[rson].sum;
}
void query(int k)
{
if(a[k].l == opx && a[k].r == opx)
{
cout << a[k].sum % 2 << endl;
return;
}
down(k);
int mid = (a[k].l + a[k].r) >> 1;
if(opx <= mid) query(lson);
if(opx > mid) query(rson);
}
int main()
{
n = read(),m = read();
build(1,1,n);
for(register int i = 1;i <= m;++ i)
{
int qwq = read();
if(qwq == 1)
{
opl = read(),opr = read();
change(1);
}
else
{
opx = read();query(1);
}
}
return 0;
}
洛谷 P5057 [CQOI2006]简单题 题解的更多相关文章
- 洛谷 P5057 [CQOI2006]简单题 (树状数组,位运算)
题意:有一个长度为\(n\)的数组,进行\(m\)次操作,每次读入一个值\(t\),如果\(t=1\),则将区间\([l,r]\)的数字反转,若\(t=2\),则查询下标为\(i\)的值. 题解:树状 ...
- 洛谷P5057 [CQOI2006]简单题(线段树)
题意 题目链接 Sol 紫色的线段树板子题??... #include<iostream> #include<cstdio> #include<cmath> usi ...
- [洛谷P5057][CQOI2006]简单题
题目大意:有一个长度为$n$的$01$串,两个操作: $1\;l\;r:$把区间$[l,r]$翻转($0->1,1->0$) $2\;p:$求第$p$位是什么 题解:维护前缀异或和,树状数 ...
- 洛谷 P5057 [CQOI2006]简单题(树状数组)
嗯... 题目链接:https://www.luogu.org/problem/P5057 首先发现这道题中只有0和1,所以肯定与二进制有关.然后发现这道题需要支持区间更改和单点查询操作,所以首先想到 ...
- P5057 [CQOI2006]简单题(线段树)
果然简单题,5分钟紫题++ 代码 #include <cstdio> #include <algorithm> #include <cstring> using n ...
- 洛谷P1072Hankson的趣味题题解
题目 一道十分经典的数论题,在考场上也可以用暴力的算法来解决,从而得到\(50pts\)的较为可观的分数,而如果想要AC的话,我们观察原题给的数据范围\(a,b,c,d\)(为了好表示,分别代表a1, ...
- 【洛谷P4148】简单题(kd-tree)
传送门 题意: 给出一个\(n*n\)的棋盘,现在有两种操作:一种是某个格子里的数字加上\(A\),另一种是询问矩阵和. 空间限制:\(20MB\),强制在线. 思路: 直接\(kd-tree\)来搞 ...
- P5057 [CQOI2006]简单题 前缀异或差分/树状数组
好思路,好思路... 思路:前缀异或差分 提交:1次 题解:区间修改,单点查询,树状数组,如思路$qwq$ #include<cstdio> #include<iostream> ...
- P5057 [CQOI2006]简单题
题目描述 有一个 n 个元素的数组,每个元素初始均为 0.有 m 条指令,要么让其中一段连续序列数字反转——0 变 1,1 变 0(操作 1),要么询问某个元素的值(操作 2). 例如当 n = 20 ...
随机推荐
- IntelliJ IDEA 超实用使用技巧分享
https://blog.csdn.net/weixin_38405253/article/details/102583954 知识点概览: 高效率配置 日常使用 必备快捷键(★★) 查找 跳转切换 ...
- VS删除空白行
使用正则表达式, 搜索 (?<=\r\n)\r\n 替换空白
- eclipse打开本地文件所在目录位置的快捷键
在开发的过程中总是会遇到需要在本地文件夹找到该本地文件的情况,比如说要发送给同事什么的. 在使用Eclipse的过程中,大多数人都是先在Eclipse目录中定位到文件,然后通过在文件的右键属性中找到文 ...
- nginx dockerfile安装第三方模块
# nginx Dockerfile # Version 1.0 # author fendo # Base images 基础镜像 FROM centos:centos7 #FROM hub.c.. ...
- 49道spring面试题整理,附带答案
1.选择使用Spring框架的原因? 使用Spring: 第一是使用它的IOC功能,在解耦上达到了配置级别. 第二是使用它对数据库访问事务相关的封装. 第三就是各种其他组件与Spring的融合,在Sp ...
- element admin中使用nprogress实现页面加载进度条
主要是知道是nprogress这个组件实现的就可以了,组件的使用方法可参考:https://blog.csdn.net/ltr15036900300/article/details/47321217 ...
- Spring Boot 使用 JWT 进行身份和权限验证
上周写了一个 适合初学者入门 Spring Security With JWT 的 Demo,这篇文章主要是对代码中涉及到的比较重要的知识点的说明. 适合初学者入门 Spring Security W ...
- 2019-09-16 PHP CURL CURLOPT参数说明(curl_setopt)
CURLOPT_RETURNTRANSFER 选项: curl_setopt($ch, CURLOPT_RETURNTRANSFER,1); 如果成功只将结果返回,不自动输出任何内容. 如果失败返回F ...
- 数据库系列(五)之 mysql的伸缩性
这篇文章,主要讲述mysql的伸缩性.在国内mysql一直都是使用得最多的数据库,在国外也排名前三.mysql是一款开源的.性能较高的数据库. 伸缩性是指在软件设计中,软件(数据库.应用程序)通过特定 ...
- 25. Apache Shiro Java反序列化漏洞
前言: 最近在审核漏洞的时候,发现尽管Apache shiro这个反序列化漏洞爆出来好久了,但是由于漏洞特征不明显,并且shiro这个组件之前很少听说,导致大厂很多服务还存在shiro反序列化的漏洞, ...