Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8. 
The natural divisors of 8 are: 1,2,4,8. Their sum is 15. 
15 modulo 9901 is 15 (that should be output). 
 
题意:输入A,B  求A^B的所有因子之和
 
思路: 首先求一个数的所有因子之和,我们就可以使用我们的唯一分解定理
(1+p1^1+p1^2+p1^3...p1^n)*(1+p2^1.....p2^n)*...*(1+pn^1+....+pn^n)
然后每一个括号里面我们可以用一个等比数列公式来求得 
a1*(1-q^n)/(1-q)    
不过既然我们要用除法,那我们为了保证精确度肯定要求逆元,还有求q^n的时候,因为范围比较大,你就要使用快速幂求得
这也说了,这是一个数的所有因子之和,
题目所求得是   A^B的所有因子之和,所以你要想想,因为数据比较大所以我们不能直接求解,这样取模容易丢失精度
运用算术基本原理  4^6=(2^2) ^6=2^12
所以可以直接算出素因子时直接个数乘以幂数即可
 
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#define mod 9901
#define MAX 1001
using namespace std;
typedef long long ll;
int cnt;
vector<ll> prime;
vector<ll> times;
ll qpow(ll a,ll b)//快速幂加快求幂数
{
ll ans=;
while(b)
{
if(b&) ans=(ans*a)%mod;
b>>=;
a=(a*a)%mod;
}
return ans;
}
void divide(ll n) {//求出n里所有的素数银子
for(ll i=;i*i<=n;++i) {
if(n%i==) {
prime.push_back(i);ll cnt=;
while(n%i==) {n/=i;++cnt;}
times.push_back(cnt);
}
}
if(n>) {prime.push_back(n);times.push_back();}
}
int main()
{
ll a,b;
scanf("%lld%lld",&a,&b);
divide(a);
ll ans=;
for(int i=,end=prime.size();i<end;++i) {
times[i]*=b;//乘了括号外的乘方
if((prime[i]-)%mod==) ans=ans*(times[i]+)%mod;//当底数为1时,就是乘以项数
else ans=ans*((qpow(prime[i],times[i]+)-+mod)*qpow(prime[i]-,mod-)%mod)%mod;//等比数列公式
}
printf("%lld\n",ans);
return ;
}

POJ - 1845 G - Sumdiv (唯一分解定理)的更多相关文章

  1. 【POJ 1845】 Sumdiv (整数唯分+约数和公式+二分等比数列前n项和+同余)

    [POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分  整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘 ...

  2. 【简●解】POJ 1845 【Sumdiv】

    POJ 1845 [Sumdiv] [题目大意] 给定\(A\)和\(B\),求\(A^B\)的所有约数之和,对\(9901\)取模. (对于全部数据,\(0<= A <= B <= ...

  3. POJ 1845:Sumdiv 快速幂+逆元

    Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16466   Accepted: 4101 Descripti ...

  4. 【POJ 1845】 Sumdiv

    [题目链接] 点击打开链接 [算法] 不妨先将A分解质因数 A = p1^q1p2^p2p3^p3..pn^qn 那么,A^B = p1^q1Bp2^q2B...pn^qnB 根据约数和定理,A^B的 ...

  5. 【POJ 1845】Sumdiv——数论 质因数 + 分治 + 快速幂

    (题面来自luogu) 题目描述 输入两个正整数a和b,求a^b的所有因子之和.结果太大,只要输出它对9901的余数. 输入格式 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式 ...

  6. POJ 1845 Sumdiv (整数唯一分解定理)

    题目链接 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 25841   Accepted: 6382 Desc ...

  7. POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)

    Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  8. poj 1845 Sumdiv (等比求和+逆元)

    题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...

  9. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

随机推荐

  1. 腾讯tOS死亡或注定,为何国内无自主ROM?

    http://tech.sina.com.cn/roll/2017-06-26/doc-ifyhmtrw4006354.shtml 腾讯OS死亡或注定,为何国内无自主ROM? 2017年06月26日 ...

  2. arm ncnn

    ncnn网址:https://github.com/Tencent/ncnn 1. sudo apt-get update sudo apt-get upgrade 2. 命令:sudo apt-ge ...

  3. Rest_framework 和路由配置(一)

    简介 Django REST framework是一个建立在Django基础之上的Web 应用开发框架,可以快速的开发REST API接口应用. Rest_framework 核心思想: 缩减代码. ...

  4. mysql find_in_set()函数的使用

    mysql 中 find_in_set() 函数语法: FIND_IN_SET(str,strList) str 要查询的字符串 strList 字段名,参数以“,”分隔,如(1,2,6,8) 查询字 ...

  5. Codeforces 1151F Sonya and Informatics (概率dp)

    大意: 给定01序列, 求随机交换k次后, 序列升序的概率. 假设一共$tot$个$0$, 设交换$i$次后前$tot$个数中有$j$个$0$的方案数为$dp[i][j]$, 答案即为$\frac{d ...

  6. js字符串转日期兼容性

    今天遇到个bug,安卓上是好的,ios就不行.然后我就把可能用到的值都打印出来,发现日期比较一项在苹果机上就显示false,而谷歌浏览器是true.突然回忆起以前开发遇到过类似的问题,都是出在字符串转 ...

  7. php导出大数据scv

    1.我系统要导出30w的数据,刚开始我使用的是: ini_set('memory_limit', '1024M');set_time_limit(0); header("Content-ty ...

  8. oracle坏块处理记录

    1. 执行sql:select count(distinct id) from bw_fpzxx ,报错如下: ORA-01578: ORACLE 数据块损坏 (文件号 16, 块号 195428)O ...

  9. linux删除文件后不释放磁盘的问题

    1. 用df 检查发现根目录可用空间越为200M # df -h Filesystem Size Used Avail Use% Mounted on /dev/xvde1 .9G .4G 232M ...

  10. JdbcTemplate查询返回JavaBean的几种方法

    关于JdbcTemplate的官方描述如下: org.springframework.jdbc.core.JdbcTemplate 大约的讲,将JdbcTemplate返回的list结果集生成Java ...