Strange Towers of Hanoi
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 3784   Accepted: 2376

Description

Background 
Charlie Darkbrown sits in another one of those boring Computer Science
lessons: At the moment the teacher just explains the standard Tower of Hanoi
problem, which bores Charlie to death! 
 
The teacher points to the blackboard (Fig. 4) and says: "So here is the
problem: 
 

  • There are three towers: A, B and C. 
     
  • There are n disks. The number n is constant while working the
    puzzle. 
     
  • All disks are different in size. 
     
  • The disks are initially stacked on tower A increasing in size from
    the top to the bottom. 
     
  • The goal of the puzzle is to transfer all of the disks from tower A
    to tower C. 
     
  • One disk at a time can be moved from the top of a tower either to an
    empty tower or to a tower with a larger disk on the top.

So your task is to write a program that calculates the smallest number of
disk moves necessary to move all the disks from tower A to C." 
Charlie: "This is incredibly boring—everybody knows that this can be solved
using a simple recursion.I deny to code something as simple as this!" 
The teacher sighs: "Well, Charlie, let's think about something for you to
do: For you there is a fourth tower D. Calculate the smallest number of disk
moves to move all the disks from tower A to tower D using all four towers." 
Charlie looks irritated: "Urgh. . . Well, I don't know an optimal algorithm
for four towers. . . " 
Problem 
So the real problem is that problem solving does not belong to the things
Charlie is good at. Actually, the only thing Charlie is really good at is
"sitting next to someone who can do the job". And now guess what — exactly!
It is you who is sitting next to Charlie, and he is already glaring at you. 
Luckily, you know that the following algorithm works for n <= 12: At first k
>= 1 disks on tower A are fixed and the remaining n-k disks are moved from
tower A to tower B using the algorithm for four towers.Then the remaining k
disks from tower A are moved to tower D using the algorithm for three
towers. At last the n - k disks from tower B are moved to tower D again
using the algorithm for four towers (and thereby not moving any of the k
disks already on tower D). Do this for all k 2 ∈{1, .... , n} and find the k
with the minimal number of moves. 
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A to
tower B using the algorithm for four towers (one move). Then you would move
the remaining two disks from tower A to tower D using the algorithm for
three towers (three moves). And the last step would be to move the disk from
tower B to tower D using again the algorithm for four towers (another move).
Thus the solution for n = 3 and k = 2 is 5 moves. To be sure that this
really is the best solution for n = 3 you need to check the other possible
values 1 and 3 for k. (But, by the way, 5 is optimal. . . )

Input

There is no input.

Output

For each n (1 <= n <= 12) print a single line containing the minimum number
of moves to solve the problem for four towers and n disks.

Sample Input

No input.

Sample Output

REFER TO OUTPUT.

Source

TUD Programming Contest 2002, Darmstadt, Germany

【题意】

本题大意是求n个盘子四座塔的hanoi问题的最少步数。输出n为1~12个盘子时各自的答案。

【分析】

汉罗塔改编的一个小问题。

以前经典的汉罗塔问题是三个柱子n个盘,每次选择一个盘子进行移动,小的不能放在大的上面。问你经过多少次操作可以使得将所有的盘子从a柱移动到c柱。

现在只是将题目小改了一下,就是将以前的三个柱子改成了四个。问你移动次数。

我们思考一下关于三个柱子的经典问题,我们的转移方程是:

dp[i] = dp[i-1]*2+1

这个方程是怎么来的呢?

就是我们先将n-1个盘移动到b柱上,代价为dp[i-1],然后将第n个盘移动到c柱,代价为1,然后将b柱上的n-1个盘子移动到c柱上代价是dp[i-1]。所以总代价是dp[i-1]+1+dp[i-1] = dp[i-1]*2+1。

对于题目给出的题目的改版,我们用同样的思想,首先,对于n个盘,我们考虑n-1个盘的子问题。那么我们显然可以得到: 对于n个盘,我们先把n-k个盘在有4个柱子的情况下移动到b柱子,然后对于剩下的k个盘子,显然前面的n-k个盘子占用了b柱子,并且剩下的k个盘子都比前面的n-k个盘子大,所以对于k个盘子来说我们只能使用剩下的3个柱子。也就是说:

f[i] = min(f[i-k]*2+f[k]),k属于[1,i)

 

【代码】

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int d[20],f[20];
int main(){
memset(f,0x3f,sizeof f);
d[1]=1;f[1]=1;
for(int i=1;i<=12;i++) d[i]=d[i-1]<<1|1;
for(int i=1;i<=12;i++){
for(int j=1;j<i;j++){
f[i]=min(f[i],f[j]*2+d[i-j]);
}
}
for(int i=1;i<=12;i++) printf("%d\n",f[i]);
return 0;
}

POJ 1958 Strange Towers of Hanoi的更多相关文章

  1. POJ 1958 Strange Towers of Hanoi 解题报告

    Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...

  2. POJ-1958 Strange Towers of Hanoi(线性动规)

    Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...

  3. POJ1958 Strange Towers of Hanoi [递推]

    题目传送门 Strange Towers of Hanoi Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3117   Ac ...

  4. 【POJ 1958】 Strange Towers of Hanoi

    [题目链接] http://poj.org/problem?id=1958 [算法] 先考虑三个塔的情况,g[i]表示在三塔情况下的移动步数,则g[i] = g[i-1] * 2 + 1 再考虑四个塔 ...

  5. Strange Towers of Hanoi POJ - 1958(递推)

    题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...

  6. poj1958——Strange Towers of Hanoi

    The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...

  7. POJ1958:Strange Towers of Hanoi

    我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...

  8. Strange Towers of Hanoi

    题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...

  9. poj1958 strange towers of hanoi

    说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...

随机推荐

  1. android:ListView bbs Demo

    我们制 作的 message_left.9.png 可以作为收到消息的背景图,那么毫无疑问你还需要再制作一张 message_right.9.png 作为发出消息的背景图. 图片都提供好了之后就可以开 ...

  2. Git -- 本地 一个相同的新的分支 并 推送到远程仓库

    (一).创建本地分支 git checkout -b 新分支名 执行该指令后,会在本地创建一个新分支,该分支是从当前分支上检出的,所以所有文件内容都和当前分支一模一样,这是正常的.创建成功后,将自动切 ...

  3. docker使用大全 tomcat安装

    um install docker #安装docker docker search tomcat docker pull docker.io/tomcat # 安装tomcat镜像 docker im ...

  4. python 路径和文件的遍历

    python发现文件夹下所有的jpg文件,并且安装文件排放的顺序输出 glob模块是最简单的模块之一,内容非常少.用它可以查找符合特定规则的文件路径名.跟使用windows下的文件搜索差不多.查找文件 ...

  5. vscode 中使用php-cs-fixer和PHP Formatter 插件规范化PHP代码

    什么是PHP-CS-Fixer?    它是php-fig组织定义的PHP代码规范,良好的代码规范可以提高代码可读性,团队沟通维护成本    使用它可以按照指定的规范格式化您的PHP代码,此工具不仅可 ...

  6. nginx: [emerg] bind() to 0.0.0.0:80 failed (98: Address already in use) 解决办法

    遇到这个问题,是因为某个服务正在使用80端口; 解决步骤: 1.使用netstat命令查看80端口被哪个服务占用了 netstat -ant | grep 80 1 2.关闭80端口 /etc/ini ...

  7. hihocoder编程练习赛91:相邻字符串

    题目链接 给定一个长度小于1e5的字符串s,s中字符全是大写英语字母.现在要寻找s中有多少组邻近的"hio"字符串,邻近的定义如下:hi距离+io距离+ho距离小于k.输入k和s, ...

  8. Linux虚拟文件系统

    从文件 I/O 看 Linux 的虚拟文件系统 1 引言 Linux 中允许众多不同的文件系统共存,如 ext2, ext3, vfat 等.通过使用同一套文件 I/O 系统 调用即可对 Linux ...

  9. Android下查看共享库依赖项

    Android下查看共享库依赖项 [时间:2017-02] [状态:Open] [关键词:android,共享库依赖项,so,ndk,objdump,readelf] 起因 近期在处理Android下 ...

  10. packetfence 7.2网络准入部署(二)

    今天呢先说下packetfence部署的环境: 关于使用方法之前的帖子有介绍,一定要看哦 https://blog.csdn.net/qq_18204953/article/details/80708 ...