POJ 1958 Strange Towers of Hanoi
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 3784 | Accepted: 2376 |
Description
Charlie Darkbrown sits in another one of those boring Computer Science
lessons: At the moment the teacher just explains the standard Tower of Hanoi
problem, which bores Charlie to death!

The teacher points to the blackboard (Fig. 4) and says: "So here is the
problem:
- There are three towers: A, B and C.
- There are n disks. The number n is constant while working the
puzzle.
- All disks are different in size.
- The disks are initially stacked on tower A increasing in size from
the top to the bottom.
- The goal of the puzzle is to transfer all of the disks from tower A
to tower C.
- One disk at a time can be moved from the top of a tower either to an
empty tower or to a tower with a larger disk on the top.
So your task is to write a program that calculates the smallest number of
disk moves necessary to move all the disks from tower A to C."
Charlie: "This is incredibly boring—everybody knows that this can be solved
using a simple recursion.I deny to code something as simple as this!"
The teacher sighs: "Well, Charlie, let's think about something for you to
do: For you there is a fourth tower D. Calculate the smallest number of disk
moves to move all the disks from tower A to tower D using all four towers."
Charlie looks irritated: "Urgh. . . Well, I don't know an optimal algorithm
for four towers. . . "
Problem
So the real problem is that problem solving does not belong to the things
Charlie is good at. Actually, the only thing Charlie is really good at is
"sitting next to someone who can do the job". And now guess what — exactly!
It is you who is sitting next to Charlie, and he is already glaring at you.
Luckily, you know that the following algorithm works for n <= 12: At first k
>= 1 disks on tower A are fixed and the remaining n-k disks are moved from
tower A to tower B using the algorithm for four towers.Then the remaining k
disks from tower A are moved to tower D using the algorithm for three
towers. At last the n - k disks from tower B are moved to tower D again
using the algorithm for four towers (and thereby not moving any of the k
disks already on tower D). Do this for all k 2 ∈{1, .... , n} and find the k
with the minimal number of moves.
So for n = 3 and k = 2 you would first move 1 (3-2) disk from tower A to
tower B using the algorithm for four towers (one move). Then you would move
the remaining two disks from tower A to tower D using the algorithm for
three towers (three moves). And the last step would be to move the disk from
tower B to tower D using again the algorithm for four towers (another move).
Thus the solution for n = 3 and k = 2 is 5 moves. To be sure that this
really is the best solution for n = 3 you need to check the other possible
values 1 and 3 for k. (But, by the way, 5 is optimal. . . )
Input
Output
of moves to solve the problem for four towers and n disks.
Sample Input
No input.
Sample Output
REFER TO OUTPUT.
Source
【题意】
本题大意是求n个盘子四座塔的hanoi问题的最少步数。输出n为1~12个盘子时各自的答案。
【分析】
汉罗塔改编的一个小问题。
以前经典的汉罗塔问题是三个柱子n个盘,每次选择一个盘子进行移动,小的不能放在大的上面。问你经过多少次操作可以使得将所有的盘子从a柱移动到c柱。
现在只是将题目小改了一下,就是将以前的三个柱子改成了四个。问你移动次数。
我们思考一下关于三个柱子的经典问题,我们的转移方程是:
dp[i] = dp[i-1]*2+1
这个方程是怎么来的呢?
就是我们先将n-1个盘移动到b柱上,代价为dp[i-1],然后将第n个盘移动到c柱,代价为1,然后将b柱上的n-1个盘子移动到c柱上代价是dp[i-1]。所以总代价是dp[i-1]+1+dp[i-1] = dp[i-1]*2+1。
对于题目给出的题目的改版,我们用同样的思想,首先,对于n个盘,我们考虑n-1个盘的子问题。那么我们显然可以得到: 对于n个盘,我们先把n-k个盘在有4个柱子的情况下移动到b柱子,然后对于剩下的k个盘子,显然前面的n-k个盘子占用了b柱子,并且剩下的k个盘子都比前面的n-k个盘子大,所以对于k个盘子来说我们只能使用剩下的3个柱子。也就是说:
f[i] = min(f[i-k]*2+f[k]),k属于[1,i)
【代码】
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int d[20],f[20];
int main(){
memset(f,0x3f,sizeof f);
d[1]=1;f[1]=1;
for(int i=1;i<=12;i++) d[i]=d[i-1]<<1|1;
for(int i=1;i<=12;i++){
for(int j=1;j<i;j++){
f[i]=min(f[i],f[j]*2+d[i-j]);
}
}
for(int i=1;i<=12;i++) printf("%d\n",f[i]);
return 0;
}
POJ 1958 Strange Towers of Hanoi的更多相关文章
- POJ 1958 Strange Towers of Hanoi 解题报告
Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...
- POJ-1958 Strange Towers of Hanoi(线性动规)
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...
- POJ1958 Strange Towers of Hanoi [递推]
题目传送门 Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3117 Ac ...
- 【POJ 1958】 Strange Towers of Hanoi
[题目链接] http://poj.org/problem?id=1958 [算法] 先考虑三个塔的情况,g[i]表示在三塔情况下的移动步数,则g[i] = g[i-1] * 2 + 1 再考虑四个塔 ...
- Strange Towers of Hanoi POJ - 1958(递推)
题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...
- poj1958——Strange Towers of Hanoi
The teacher points to the blackboard (Fig. 4) and says: "So here is the problem: There are thre ...
- POJ1958:Strange Towers of Hanoi
我对状态空间的理解:https://www.cnblogs.com/AKMer/p/9622590.html 题目传送门:http://poj.org/problem?id=1958 题目要我们求四柱 ...
- Strange Towers of Hanoi
题目链接:http://sfxb.openjudge.cn/dongtaiguihua/E/ 题目描述:4个柱子的汉诺塔,求盘子个数n从1到12时,从A移到D所需的最大次数.限制条件和三个柱子的汉诺塔 ...
- poj1958 strange towers of hanoi
说是递推,其实也算是个DP吧. 就是4塔的汉诺塔问题. 考虑三塔:先从a挪n-1个到b,把最大的挪到c,然后再把n-1个从b挪到c,所以是 f[i] = 2 * f[i-1] + 1; 那么4塔类似: ...
随机推荐
- 字节码 反编译 APKTool 重新打jar包 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- SoapUI Pro Project Solution Collection-Custom project and setup
import java.util.List; import java.util.Map; import org.apache.log4j.Logger; import com.eviware.soap ...
- 拯救者y720 双显卡, nvidia 1060 ,Ubuntu16.04 安装 Nvidia 显卡驱动
为了能够记录,下次可以有参考的东西,就记录如此 多谢网上大牛的帖子,我都是安装您们的才顺利的一次性,无黑屏现象的完成了安装 1. 参考: 1.secure boot option ( 开机进入bios ...
- google全球地址
IP Addresses of Google Global Cache www.kookle.co.nr Bulgaria 93.123.23.1 93.123.23.2 93.123.23.3 93 ...
- layui table 根据条件改变更换表格颜色 高亮显示 数据筛选
请问想让当layui表格的某个字段符合某个条件的时候,让该行变颜色.这样可以实现么. layui数据表格怎么更换表格颜色 layui表格 通过判断某一行中的某一列的值进行设置这一行的颜色 LayUI之 ...
- (3) MySQL分区表使用方法
1. 确认MySQL服务器是否支持分区表 命令: show plugins; 2. MySQL分区表的特点 在逻辑上为一个表,在物理上存储在多个文件中 HASH分区(HASH) HASH分区的特点 根 ...
- 一篇文全面了解DevOps:从概念、关键问题、兴起到实现需求
一篇文全面了解DevOps:从概念.关键问题.兴起到实现需求 转自:一篇文全面了解DevOps:从概念.关键问题.兴起到实现需求 2018-06-06 目前在国外,互联网巨头如Google.Faceb ...
- JUnit+Mockito结合测试Spring MVC Controller
[本文出自天外归云的博客园] 概要简述 利用JUnit结合Mockito,再加上spingframework自带的一些方法,就可以组合起来对Spring MVC中的Controller层进行测试. 在 ...
- 【iCore1S 双核心板_FPGA】例程十四:FSMC总线通信实验——独立地址模式
实验原理: STM32F103上自带FMC控制器,本实验将通过FMC总线的地址独立模式实现STM32与FPGA 之间通信,FPGA内部建立RAM块,FPGA桥接STM32和RAM块,本实验通过FSMC ...
- 【6集iCore3_ADP触摸屏驱动讲解视频】6-4 底层驱动之SDRAM读写(上)
源视频包下载地址: 链接:http://pan.baidu.com/s/1i5lzzj3 密码:bwoe 银杏科技优酷视频发布区: http://i.youku.com/gingko8