深入理解无穷级数和的定义(the sum of the series)
Given an infinite sequence (a1, a2, a3, ...), a series is informally the form of adding all those terms together: a1 + a2 + a3 + ···. To emphasize that there are an infinite number of terms, a series is often called an infinite series.
值得注意的是等式右边并不是左边的和,只是左边的缩写形式。
because when you start from adding up the first two terms of the infinite sequence, and then add the third term, the 4-th term, ..., no matter how much time you spend on adding these terms, you always end up adding up only a finite number of terms , thus you couldn't add up an infinite number of terms, so cannot compute their sum by adding one term after another.
An easy way that an infinite series has a sum is if all the $a_n$ are zero for n sufficiently large. Such a series can be identified with a finite sum, so it is only infinite in a trivial sense.
Working out the properties of the series that has a sum even if infinitely many terms are non-zero is the essence of the study of series. Consider the example
It is possible to "visualize" it has sum on the real number line: we can imagine a line of length 2, with successive segments marked off of lengths 1, ½, ¼, etc. There is always room to mark the next segment, because the amount of line remaining is always the same as the last segment marked: when we have marked off ½, we still have a piece of length ½ unmarked, so we can certainly mark the next ¼. This argument does not prove that the sum is equal to 2 (although it is), but it does prove that it is at most 2. In other words, the series has an upper bound. As for proving the series is equal to 2, we choose $$a_n=1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}$$ and $b_n=2$, then $$a_n<1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}+\cdots\leq b_n$$ holds for every nature number $n$ and $\lim _{n\rightarrow \infty }\left( b_{n}-a_{n}\right)=\lim _{n\rightarrow \infty }\frac{1}{2^n} =0$, according to the nested intervals theorem the intersection of all the $[a_n,b_n]$ contains exactly one real number, since 2 is an element of each of these intervals, $1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}+\cdots = 2$, this proved the sum of the series is 2.
It is also possible to prove $$1 - {1 \over 2} + {1 \over 3} - {1 \over 4} + {1 \over 5} - \cdots =\sum_{n=1}^\infty {\left(-1\right)^{n-1} \over n}=\ln(2)$$ using the nested intervals theorem by choosing $a_k=\sum_{n=1}^{2k} {\left(-1\right)^{n-1} \over n}$ and $b_k=\sum_{n=1}^{2k+1} {\left(-1\right)^{n-1} \over n}$ for all natural numbers $k$.
While a more general method to get the sum of a series is by taking limit.
As you see, we defined the sum of a infinite series, this result seems not that naturally like 2 + 2 is computed out equal to 4,so is the definition give us the true sum of the infinite series? $\lim _{n\rightarrow \infty }S_{n}$ has a meaning that the number of the first n terms added up increases indefinitely, this is equivalent to $$a_{1}+a_{2}+a_{3}+\cdots $$, thus defining the sum of a series as the limit of the sequence of its partial sums is intuitively plausible.
Given the definition gives the true sum of the infinite series, the statement that 0.999… = 1 can itself be interpreted and proven as:
${\displaystyle 0.999\ldots =\lim _{n\to \infty }0.\underbrace {99\ldots 9} _{n}=\lim _{n\to \infty }\sum _{k=1}^{n}{\frac {9}{10^{k}}}=\lim _{n\to \infty }\left(1-{\frac {1}{10^{n}}}\right)=1-\lim _{n\to \infty }{\frac {1}{10^{n}}}=1\,-\,0=1.\,}$
批注:一开始convergent和divergent是对一个sequence来说的,定义如下
但怎么能说级数convergent和divergent了呢?级数,根据上面的定义不就是一个数列的无穷多项依次加起来的一个和式吗?对于一个和式能说convergent和divergent吗?我看不如说一个级数has a sum or not,然后说其部分和组成的数列convergent和divergent似乎比较合适!说一个series converges to a limit L不如说这个series =L。
quoted from http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-convergence-2009-1.pdf
深入理解无穷级数和的定义(the sum of the series)的更多相关文章
- Sum of AP series——AP系列之和
A series with same common difference is known as arithmetic series. The first term of series is 'a' ...
- [译] 理解PHP内部函数的定义(给PHP开发者的PHP源码-第二部分)
文章来自:http://www.hoohack.me/2016/02/10/understanding-phps-internal-function-definitions-ch 原文:https:/ ...
- 关于DFS和BFS的理解 以及坐标的定义
http://blog.csdn.net/bool_isprime/article/details/5803018DFS: 1: 坐标类型搜索 :这种类型的搜索题目通常来说简单的比较简单,复杂的通常在 ...
- 【零基础学习iOS开发】【02-C语言】11-函数的声明和定义
在上一讲中,简单介绍了函数的定义和使用,只要你想完成一个新功能,首先想到的应该是定义一个新的函数来完成这个功能.这讲继续介绍函数的其他用法和注意事项. 一.函数的声明 1.在C语言中,函数的定义顺序是 ...
- node.js 中回调函数callback(转载),说的很清楚,看一遍就理解了
最近在看 express,满眼看去,到处是以函数作为参数的回调函数的使用.如果这个概念理解不了,nodejs.express 的代码就会看得一塌糊涂.比如: 复制代码 代码如下: app.use(fu ...
- 理解javascript中的回调函数(callback)
以下内容来源于:http://www.jb51.net/article/54641.htm 最近在看 express,满眼看去,到处是以函数作为参数的回调函数的使用.如果这个概念理解不了,nodejs ...
- 带你深入理解STL之迭代器和Traits技法
在开始讲迭代器之前,先列举几个例子,由浅入深的来理解一下为什么要设计迭代器. //对于int类的求和函数 int sum(int *a , int n) { int sum = 0 ; for (in ...
- 我从来不理解JavaScript闭包,直到有人这样向我解释它...
摘要: 理解JS闭包. 原文:我从来不理解JavaScript闭包,直到有人这样向我解释它... 作者:前端小智 Fundebug经授权转载,版权归原作者所有. 正如标题所述,JavaScript闭包 ...
- JAVAWEB开发之JSTL标签库的使用、 自己定义EL函数、自己定义标签(带属性的、带标签体的)
JSTL JSTL简单介绍: JSTL的全称:JSP Standard Tag Library,JSP标准标签库 JSTL的作用: 提供给Java Web开发者一个标准通用的标签函数库 和E ...
随机推荐
- 那天有个小孩教我WCF[一][2/3]
接着上次的继续讲吧 我们开始吧 9.创建数据库 use master go --创建库 if exists(select * from sysdatabases where name='NewsDB' ...
- 适合初学者的python实际例子
最近在github上发现了一个有意思的项目,很适合初学者学习python代码. 学习一门语言刚开始的时候是很枯燥的,各种概念语法以及无聊的打印都会让人失去更进一步学习的动力. 很多同学在学习了一段时间 ...
- System.SerializableAttribute
System.SerializableAttribute 串行化是指存储和获取磁盘文件.内存或其他地方中的对象.在串行化时,所有的实例数据都保存到存储介质上,在取消串行化时,对象会被还原,且不能与其原 ...
- SpringMVC(Springboot)返回文件方法
https://blog.csdn.net/Lynn_coder/article/details/79953977 ****************************************** ...
- QT-Qt获取当前时间并格式化输出及将积秒转换成时间
https://blog.csdn.net/u012199908/article/details/50731543 格式化输出当前时刻qDebug()<<"currentTime ...
- 关于批判性思维(Critical Thinking)
批判性思维(CriticalThinking)就是通过一定的标准评价思维,进而改善思维,是合理的.反思性的思维,既是思维技能,也是思维倾向. 批判性思维是在普通思维的基础上又加了第二层思考,并对第一层 ...
- JS封装动画框架,网易轮播图,旋转轮播图
JS封装动画框架,网易轮播图,旋转轮播图 1. JS封装运动框架 // 多个属性运动框架 添加回调函数 function animate(obj,json,fn) { clearInterval(ob ...
- JavaScript Scroll家族以及封装
JavaScript Scroll家族以及封装 scrollTop & scrollLeft 别卷去的值,就是当滑动滚轮浏览网页的时候,网页隐藏在屏幕上方或左侧的距离 获得scrollTop ...
- hdoj:2022
#include <iostream> #include <string> using namespace std; int main() { int m, n; int x, ...
- Async Performance: Understanding the Costs of Async and Await
Stephen Toub Download the Code Sample Asynchronous programming has long been the realm of only the m ...