Given an infinite sequence (a1, a2, a3, ...), a series is informally the form of adding all those terms together: a1 + a2 + a3 + ···. To emphasize that there are an infinite number of terms, a series is often called an infinite series.

值得注意的是等式右边并不是左边的和,只是左边的缩写形式。

because when you start from adding up the first two terms of the infinite sequence, and then add the third term, the 4-th term, ..., no matter how much time you spend on adding these terms, you always end up adding up only a finite number of terms , thus you couldn't add up an infinite number of terms, so cannot compute their sum by adding one term after another.

An easy way that an infinite series has a sum is if all the $a_n$ are zero for n sufficiently large. Such a series can be identified with a finite sum, so it is only infinite in a trivial sense.

Working out the properties of the series that has a sum even if infinitely many terms are non-zero is the essence of the study of series. Consider the example

It is possible to "visualize" it has sum on the real number line: we can imagine a line of length 2, with successive segments marked off of lengths 1, ½, ¼, etc. There is always room to mark the next segment, because the amount of line remaining is always the same as the last segment marked: when we have marked off ½, we still have a piece of length ½ unmarked, so we can certainly mark the next ¼. This argument does not prove that the sum is equal to 2 (although it is), but it does prove that it is at most 2. In other words, the series has an upper bound. As for proving the series is equal to 2, we choose $$a_n=1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}$$ and $b_n=2$, then $$a_n<1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}+\cdots\leq b_n$$ holds for every nature number $n$ and $\lim _{n\rightarrow \infty }\left( b_{n}-a_{n}\right)=\lim _{n\rightarrow \infty }\frac{1}{2^n} =0$, according to the nested intervals theorem the intersection of all the $[a_n,b_n]$ contains exactly one real number, since 2 is an element of each of these intervals, $1+\frac12+\frac14+\frac18+\frac{1}{16}+\cdots+\frac{1}{2^{n-1}}+\frac{1}{2^n}+\cdots = 2$, this proved the sum of the series is 2.

It is also possible to prove $$1 - {1 \over 2} + {1 \over 3} - {1 \over 4} + {1 \over 5} - \cdots =\sum_{n=1}^\infty {\left(-1\right)^{n-1} \over n}=\ln(2)$$ using the nested intervals theorem by choosing $a_k=\sum_{n=1}^{2k} {\left(-1\right)^{n-1} \over n}$ and $b_k=\sum_{n=1}^{2k+1} {\left(-1\right)^{n-1} \over n}$ for all natural numbers $k$.

While a more general method to get the sum of a series is by taking limit.

As you see, we defined the sum of a infinite series, this result seems not that naturally like 2 + 2 is computed out equal to 4,so is the definition give us the true sum of the infinite series? $\lim _{n\rightarrow \infty }S_{n}$ has a meaning that the number of the first n terms added up increases indefinitely, this is equivalent to $$a_{1}+a_{2}+a_{3}+\cdots $$, thus defining the sum of a series as the limit of the sequence of its partial sums is intuitively plausible.

Given the definition gives the true sum of the infinite series, the statement that 0.999… = 1 can itself be interpreted and proven as:

${\displaystyle 0.999\ldots =\lim _{n\to \infty }0.\underbrace {99\ldots 9} _{n}=\lim _{n\to \infty }\sum _{k=1}^{n}{\frac {9}{10^{k}}}=\lim _{n\to \infty }\left(1-{\frac {1}{10^{n}}}\right)=1-\lim _{n\to \infty }{\frac {1}{10^{n}}}=1\,-\,0=1.\,}$

批注:一开始convergent和divergent是对一个sequence来说的,定义如下

但怎么能说级数convergent和divergent了呢?级数,根据上面的定义不就是一个数列的无穷多项依次加起来的一个和式吗?对于一个和式能说convergent和divergent吗?我看不如说一个级数has a sum or not,然后说其部分和组成的数列convergent和divergent似乎比较合适!说一个series converges to a limit L不如说这个series =L。

quoted from http://www.mathcentre.ac.uk/resources/uploaded/mc-ty-convergence-2009-1.pdf

深入理解无穷级数和的定义(the sum of the series)的更多相关文章

  1. Sum of AP series——AP系列之和

    A series with same common difference is known as arithmetic series. The first term of series is 'a' ...

  2. [译] 理解PHP内部函数的定义(给PHP开发者的PHP源码-第二部分)

    文章来自:http://www.hoohack.me/2016/02/10/understanding-phps-internal-function-definitions-ch 原文:https:/ ...

  3. 关于DFS和BFS的理解 以及坐标的定义

    http://blog.csdn.net/bool_isprime/article/details/5803018DFS: 1: 坐标类型搜索 :这种类型的搜索题目通常来说简单的比较简单,复杂的通常在 ...

  4. 【零基础学习iOS开发】【02-C语言】11-函数的声明和定义

    在上一讲中,简单介绍了函数的定义和使用,只要你想完成一个新功能,首先想到的应该是定义一个新的函数来完成这个功能.这讲继续介绍函数的其他用法和注意事项. 一.函数的声明 1.在C语言中,函数的定义顺序是 ...

  5. node.js 中回调函数callback(转载),说的很清楚,看一遍就理解了

    最近在看 express,满眼看去,到处是以函数作为参数的回调函数的使用.如果这个概念理解不了,nodejs.express 的代码就会看得一塌糊涂.比如: 复制代码 代码如下: app.use(fu ...

  6. 理解javascript中的回调函数(callback)

    以下内容来源于:http://www.jb51.net/article/54641.htm 最近在看 express,满眼看去,到处是以函数作为参数的回调函数的使用.如果这个概念理解不了,nodejs ...

  7. 带你深入理解STL之迭代器和Traits技法

    在开始讲迭代器之前,先列举几个例子,由浅入深的来理解一下为什么要设计迭代器. //对于int类的求和函数 int sum(int *a , int n) { int sum = 0 ; for (in ...

  8. 我从来不理解JavaScript闭包,直到有人这样向我解释它...

    摘要: 理解JS闭包. 原文:我从来不理解JavaScript闭包,直到有人这样向我解释它... 作者:前端小智 Fundebug经授权转载,版权归原作者所有. 正如标题所述,JavaScript闭包 ...

  9. JAVAWEB开发之JSTL标签库的使用、 自己定义EL函数、自己定义标签(带属性的、带标签体的)

    JSTL  JSTL简单介绍: JSTL的全称:JSP Standard Tag Library,JSP标准标签库 JSTL的作用:   提供给Java Web开发者一个标准通用的标签函数库   和E ...

随机推荐

  1. Homebrew macOS 包管理

    1.Homebrew 简介 1.1 Homebrew Homebrew 是一款 macOS 平台下的软件包管理工具,拥有安装.卸载.更新.查看.搜索等很多实用的功能.简单的一条指令,就可以实现包管理, ...

  2. Java注解应用,自定义注解映射实现方案说明.

    插件结构如图: 注册模块定义了三个:用于实体与表映射的注解,用于属性到表字段的映射,用于映射时过滤掉的注解. 1.用于实体与表映射的注解 package com.dobby.plugins.annot ...

  3. Android Studio updating indices 一直刷新和闪烁

    Android Studio 更新到了 3.1.3 版本,在导入了工程以后,一直出现了 updating indices 刷新的情况,造成闪烁,在切换到其他视图以后,Android Studio 会一 ...

  4. java协变逆变,PECS

    public static void main(String[] args) { // Object <- Fruit <- Apple <- RedApple System.out ...

  5. linux grep 取出特定字符串并统计个数

    原始日志如下: $more text.log 2018-07-16 00:00:03 [DEBUG] request setInformation params:{"msg":&q ...

  6. 【6集iCore3_ADP触摸屏驱动讲解视频】6-6 底层驱动之触摸操作

    源视频包下载地址:  链接:http://pan.baidu.com/s/1skQlWAT 密码:ymn7   银杏科技优酷视频发布区: http://i.youku.com/gingko8  

  7. AI金融知识自学偏量化方向-了解不同类型的机器学习2

    有监督学习 vs 无监督学习 迭代和评估 偏差方差权衡 结合有监督学习和无监督学习(半监督学习)

  8. Android KK 找不到<cutils/properties.h>

    一直通过property来控制android系统的号码匹配位数,之前的项目都工作的好好的,但到了KK时,在sqlite库中引用property的相关方法,却一直编译error... 折腾了好久,发现从 ...

  9. [echarts] 横纵数据散点图

    需求:课程平均分(X)与课程通过率散点图 http://echarts.baidu.com/echarts2/doc/example/scatter1.html https://www.cnblogs ...

  10. EventBus vs Otto vs Guava--自定义消息总线

    同步发表于http://avenwu.net/ioc/2015/01/29/custom_eventbus Fork on github https://github.com/avenwu/suppo ...