/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int sumNumbers(TreeNode* root) {
if(root == NULL) return ;
int res = ;
DFS(root,res,);
return res;
} void DFS(TreeNode* root,int &res,int add){
if(root->left == NULL && root->right == NULL){
add = add* + root->val;
res += add;
return;
}
add = add* + root->val;
if(root->left != NULL){
DFS(root->left,res,add);
}
if(root->right != NULL){
DFS(root->right,res,add);
}
}
};

EZ

Leetcode 129的更多相关文章

  1. leetcode@ [129] Sum Root to Leaf Numbers (DFS)

    https://leetcode.com/problems/sum-root-to-leaf-numbers/ Given a binary tree containing digits from 0 ...

  2. [LeetCode] 129. Sum Root to Leaf Numbers 求根到叶节点数字之和

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  3. Java实现 LeetCode 129 求根到叶子节点数字之和

    129. 求根到叶子节点数字之和 给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字. 例如,从根到叶子节点路径 1->2->3 代表数字 12 ...

  4. leetcode 129. Sum Root to Leaf Numbers ----- java

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  5. Leetcode#129 Sum Root to Leaf Numbers

    原题地址 二叉树的遍历 代码: vector<int> path; int sumNumbers(TreeNode *root) { if (!root) ; ; path.push_ba ...

  6. [LeetCode] 129. Sum Root to Leaf Numbers 解题思路

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  7. [LeetCode] 129. Sum Root to Leaf Numbers_Medium tag: DFS

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  8. Java for LeetCode 129 Sum Root to Leaf Numbers

    Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...

  9. LeetCode 129. 求根到叶子节点数字之和(Sum Root to Leaf Numbers)

    题目描述 给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字. 例如,从根到叶子节点路径 1->2->3 代表数字 123. 计算从根到叶子节点 ...

随机推荐

  1. Python-ConfigParser获取配置项名称大小写问题

    C:\Python27\Lib\ConfigParser.py: def optionxform(self, optionstr): return optionstr.lower() 会将配置文件中的 ...

  2. 【译】第16节---数据注解-Table

    原文:http://www.entityframeworktutorial.net/code-first/table-dataannotations-attribute-in-code-first.a ...

  3. Log4j日志依赖

    <!-- https://mvnrepository.com/artifact/log4j/log4j --><dependency> <groupId>log4j ...

  4. 把一个List拆分为几个大小一样的List

    static void Main(string[] args) { List<String> tarArr = new List<String>(); tarArr.Add(& ...

  5. Perl CGI编程

    http://www.runoob.com/perl/perl-cgi-programming.html 什么是CGI CGI 目前由NCSA维护,NCSA定义CGI如下: CGI(Common Ga ...

  6. 生成器的使用demo

    定义一个函数: def frange(start, stop, increment): x = start while x < stop: yield x x += increment 使用: ...

  7. c代码,输出i,j,k互不相同的三位数

    #include <stdio.h> int main() { int i,j,k; printf("\n"); for(i=1;i<5;i++){ for(j= ...

  8. React + Ant Design网页,配置

    第一个React + Ant Design网页(一.配置+编写主页) 引用博主的另外一篇VUE2.0+ElementUI教程, 请移步:  https://blog.csdn.net/u0129070 ...

  9. 《剑指offer》第六十三题(股票的最大利润)

    // 面试题63:股票的最大利润 // 题目:假设把某股票的价格按照时间先后顺序存储在数组中,请问买卖交易该股 // 票可能获得的利润是多少?例如一只股票在某些时间节点的价格为{9, 11, 8, 5 ...

  10. python 断言大全

    参考链接:https://blog.csdn.net/qq1124794084/article/details/51668672 1. 小数位模糊等于 自动化脚本最重要的是断言,正确设置断言以后才能帮 ...