Mat属性方法介绍:OpenCV2:Mat属性type,depth,step

推荐一套OpenCV入门博客:OpenCV探索

一、Mat

Mat类用于表示一个多维的单通道或者多通道的稠密数组。能够用来保存实数或复数的向量、矩阵,灰度或彩色图像,立体元素,点云,张量以及直方图(高维的直方图使用SparseMat保存比较好)。简而言之,Mat就是用来保存多维的矩阵的。

Mat存储

Mat分为头信息和数组body两部分,头信息声明后即创建,body需要调用create方法或者其他方法后才划取内存创建。由于图片含有通道这一特性,所以其存储可以描述成,假设一幅图,它的通道数为i,大小为a*b,则存储成数字矩阵形式,则为一个行数为a,列数为b*i大小的矩阵,而对应行,i个通道的值是顺序穿插的。

Mat类型

type

表示了矩阵中元素的类型以及矩阵的通道个数,它是一系列的预定义的常量,其命名规则为CV_(位数)+(数据类型)+(通道数)。具体的有以下值:

CV_8UC1 CV_8UC2 CV_8UC3 CV_8UC4
CV_8SC1 CV_8SC2 CV_8SC3 CV_8SC4
CV_16UC1 CV_16UC2 CV_16UC3 CV_16UC4
CV_16SC1 CV_16SC2 CV_16SC3 CV_16SC4
CV_32SC1 CV_32SC2 CV_32SC3 CV_32SC4
CV_32FC1 CV_32FC2 CV_32FC3 CV_32FC4
CV_64FC1 CV_64FC2 CV_64FC3 CV_64FC4

这里U(unsigned integer)表示的是无符号整数,S(signed integer)是有符号整数,F(float)是浮点数。
例如:CV_16UC2,表示的是元素类型是一个16位的无符号整数,通道为2.
C1,C2,C3,C4则表示通道是1,2,3,4
type一般是在创建Mat对象时设定,如果要取得Mat的元素类型,则无需使用type,使用depth属性。

我们实际查询时返回的都是一个整数而非上面的字符串,看看opencv源码:

#define CV_CN_MAX     512
#define CV_CN_SHIFT 3
#define CV_DEPTH_MAX (1 << CV_CN_SHIFT) #define CV_8U 0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7 #define CV_MAT_DEPTH_MASK (CV_DEPTH_MAX - 1)
#define CV_MAT_DEPTH(flags) ((flags) & CV_MAT_DEPTH_MASK) #define CV_MAKETYPE(depth,cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT))
#define CV_MAKE_TYPE CV_MAKETYPE #define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n)) #define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n)) #define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n)) #define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n)) #define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n)) #define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n)) #define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))

实际上有如下8个类型:

#define CV_8U   0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7

即单通道时,这些编号即是这些声明的值。然后若是2个通道,则加上8;3个通道,则加上16;4个通道则加上24。

原因是

#define CV_MAKETYPE(depth,cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT))

先不看前边的部分,cn - 1 << CV_CNSHIFT即将通道数-1再移3位。(CV_CN_SHIFT值为3)

前边的看起来虽然是嵌套了声明,实际上也并不是很复杂。其实就是8个编号分别与7进行与操作,当然在当前看到的这些情况下,其实就是原值。

一句话总结这些声明,就是:声明的值 = 数据类型的编号 + (通道数 - 1) * 8

depth

矩阵中元素的一个通道的数据类型,这个值和type是相关的。例如 type为 CV_16SC2,一个2通道的16位的有符号整数。那么,depth则是CV_16S。depth也是一系列的预定义值,
将type的预定义值去掉通道信息就是depth值:
CV_8U CV_8S CV_16U CV_16S CV_32S CV_32F CV_64F

二、Mat常见方法属性

Mat常规方法

Mat信息查询

Mat元素访问

从Mat创建子Mat

『OpenCV3』Mat简介的更多相关文章

  1. 『OpenCV3』滤波器边缘检测

    一.原理简介 边缘检测原理 - Sobel, Laplace, Canny算子 X方向Sobel算子 -1 -2 -1 0 0 0 1 2 1 Y方向Sobel算子 -1 0 1 -2 0 2 -1 ...

  2. 『OpenCV3』霍夫变换原理及实现

    霍夫变换常用于检测直线特征,经扩展后的霍夫变换也可以检测其他简单的图像结构. 在霍夫变换中我们常用公式 ρ = x*cosθ + y*sinθ 表示直线,其中ρ是圆的半径(也可以理解为原点到直线的距离 ...

  3. 『OpenCV3』滤波器实现及使用滤波器降噪

    一.滤波器实现 我们实现这样一个基于拉普拉斯算子的滤波器核心,并使用它进行滤波,这可以做到锐化图像的效果, 0 -1 0 -1 5 -1 0 -1 0 首先我们完全手动的进行滤波,依赖指针操作, vo ...

  4. 『OpenCV3』基于色彩分割图片

    一.遍历图像实现色彩掩码 本节我们实现这样一个算法,我们指定某种颜色和一个阈值,根据输入图片生成一张掩码,标记符合的像素(和指定颜色的差异在阈值容忍内). 源代码如下,我们使用一个class完成这个目 ...

  5. 『OpenCV3』Harris角点特征_API调用及python手动实现

    一.OpenCV接口调用示意 介绍了OpenCV3中提取图像角点特征的函数: # coding=utf- import cv2 import numpy as np '''Harris算法角点特征提取 ...

  6. 『Golang』Go简介以及环境搭建

    简介 go语言是由Google进行维护的一个编程语言,发布自2009年.其以良好的编程风格.优秀的并发机制被广大的技术人员所接受. 使用go语言开发的优秀的产品: Docker gocode lime ...

  7. 『OpenCV3』处理视频&摄像头

    在opencv中,摄像头和视频文件并没有很大不同,都是一个可以read的数据源,使用cv2.VideoCapture(path).read()可以获取(flag,当前帧),对于每一帧,使用图片处理函数 ...

  8. 『OpenCV3』简单图片处理

    cv2和numpy深度契合,其图片读入后就是numpy.array,只不过dtype比较不常用而已,支持全部数组方法 数组既图片 import numpy as np import cv2 img = ...

  9. 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络暨TensorFlow和Keras交互简介

    零.参考资料 有关FPN的介绍见『计算机视觉』FPN特征金字塔网络. 网络构架部分代码见Mask_RCNN/mrcnn/model.py中class MaskRCNN的build方法的"in ...

随机推荐

  1. 【bzoj1706】[usaco2007 Nov]relays 奶牛接力跑

    题意 给出一张无向图,求出恰巧经过n条边的最短路. 题解 考虑先离散化,那么点的个数只会有202个最多.于是复杂度里面就可以有一个\(n^3\).考虑构造矩阵\(d^1\)表示经过一条边的最短路,那么 ...

  2. Spring Boot 2 入门

    Spring Boot其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置. 参考网上资料,一路踩了几个坑,终于搞出了 ...

  3. P2120 [ZJOI2007]仓库建设(dp+斜率优化)

    思路 首先暴力DP显然,可以得20分 加上一个前缀和优化,可以得到40分 然后上斜率优化 设\(sum_i\)为\(\sum_{1}^iP_i\),\(sump_i\)为\(\sum_{1}^{i}P ...

  4. 论文笔记:ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks

    ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   ...

  5. 光学定位点(mark点)

     Mark点是使用机器焊接时用于定位的点.  表贴元件的pcb更需要设置Mark点,因为在大批量生产时,贴片机都是操作人员手动或者机器自动寻找Mark点进行校准.极少数不设置Mark点也可以,操作非常 ...

  6. 【ASP.NET】System.Web.Routing - Route Class

    Provides properties and methods for defining a route and for obtaining information about the route. ...

  7. 将一个符合URL格式的字符串变成链接

    function replaceURLWithHTMLLinks(text) { /* Example: >>> GateOne.Utils.replaceURLWithHTMLLi ...

  8. Python 网页解析器

    Python 有几种网页解析器? 1. 正则表达式 2.html.parser (Python自动) 3.BeautifulSoup(第三方)(功能比较强大) 是一个HTML/XML的解析器 4.lx ...

  9. Java一次性读取文件的内容

    我们做文本处理的时候的最常用的就是读写文件了,尤其是读取文件,不论是什么文件,我都倾向于一次性将文本的原始内容直接读取到内存中再做处理,当然,这需要你有一台大内存的机器,内存不够者……可以一次读取少部 ...

  10. VMware网络连接模式—桥接、NAT以及仅主机模式的详细介绍和区别

    在使用VMware Workstation(以下简称:VMware)创建虚拟机的过程中,配置虚拟机的网络连接是非常重要的一环,当我们为虚拟机配置网络连接时,我们可以看到如下图所示的几种网络连接模式:桥 ...