BZOJ 1040: [ZJOI2008]骑士(基环树dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1040
题意:
思路:
这是基环树,因为每个人只会有一个厌恶的人,所以每个节点只会有一个父亲节点,但是根节点也是有父亲节点的,所以在树中肯定是存在一个环的,只要删除该环中的任意一条边,那么就能将该图变成一颗树。
如果是树的话,那就很简单了,d[u][0/1] dp求解即可。
现在假设删除的边是e,两端的节点分别是u,v,首先对u为根的树作一次dp,最后取d[u][0](v取不取都无所谓),不能取d[u][1](因为此时可能也取了v)。但是这样的话没有考虑选u的情况,所以再对v为根的树作一次dp,最后取d[v][0]。两者取大者即可。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
const int maxn = +;
typedef long long ll; int n,tot=,edgeID,edgeLeft,edgeRight;
int head[maxn],vis[maxn];
ll val[maxn], d[maxn][]; struct node
{
int v,next;
}e[*maxn]; void addEdge(int u,int v)
{
e[tot].v = v;
e[tot].next = head[u];
head[u] = tot++;
} void dfs(int u, int fa)
{
vis[u] = ;
for(int i=head[u];i!=-;i=e[i].next)
{
int v = e[i].v;
if(v == fa) continue;
if(!vis[v]) dfs(v,u);
else //找到了环
{
edgeID = i; //记录边和两端顶点
edgeLeft = u;
edgeRight = v;
}
}
} ll dp(int u, int fa)
{
d[u][] = , d[u][] = val[u];
for(int i=head[u];i!=-;i=e[i].next)
{
int v = e[i].v;
if(v==fa) continue;
if(i==edgeID || i==(edgeID^)) continue; //正向边和反向边
dp(v,u);
d[u][] += max(d[v][],d[v][]);
d[u][] += d[v][];
}
return d[u][];
} int main()
{
//freopen("in.txt","r",stdin);
memset(head,-,sizeof(head));
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int x;
scanf("%lld%d",&val[i],&x);
addEdge(i,x);
addEdge(x,i);
}
ll ans = ;
for(int i=;i<=n;i++)
{
if(vis[i]) continue;
dfs(i,-);
ans += max(dp(edgeLeft,-),dp(edgeRight,-));
}
printf("%lld\n",ans);
return ;
}
BZOJ 1040: [ZJOI2008]骑士(基环树dp)的更多相关文章
- BZOJ 1040 [ZJOI2008]骑士 (基环树+树形DP)
<题目链接> 题目大意: Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的 ...
- BZOJ 1040: [ZJOI2008]骑士 基环加外向树
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1190 Solved: 465[Submit][Status] ...
- [ZJOI2008] 骑士 - 基环树dp
一类基环树dp都是这个套路吧 随便拆掉环上的一条边 然后跑树形dp,设\(f[i][0/1]\)表示以第\(i\)个人为根的子树,第\(i\)个人选或不选,能收获的最大值 以断点\(u,v\)为根分别 ...
- 【BZOJ】1040: [ZJOI2008]骑士 环套树DP
[题意]给定n个人的ai和bi,表示第i个人能力值为ai且不能和bi同时选择,求能力值和最大的选择方案.n<=10^6. [算法]环套树DP(基环树) [题解]n个点n条边——基环森林(若干环套 ...
- [BZOJ1040][ZJOI2008]骑士 基环树DP
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1040 题目给出了$n$个点和$n$条无向边,即一棵基环树或者基环树森林. 如果题目给的关系 ...
- bzoj 1040: [ZJOI2008]骑士 環套樹DP
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1755 Solved: 690[Submit][Status] ...
- bzoj 1040: [ZJOI2008]骑士 树形dp
题目链接 1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3054 Solved: 1162[Submit][S ...
- [BZOJ 1040][ZJOI2008]骑士
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5403 Solved: 2060[Submit][Status ...
- [BZOJ1040][ZJOI2008]骑士(环套树dp)
1040: [ZJOI2008]骑士 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5816 Solved: 2263[Submit][Status ...
- BZOJ1040:骑士(基环树DP)
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...
随机推荐
- android排除报很多错方法 Execution failed for task ':app:compileDebugJavaWithJavac' in Android Studio
android排除报很多错方法1.回撤对应layout的xml改动2.回撤对应java的改动3.重命名文件后导致的资源不对应 Execution failed for task ':app:compi ...
- 【JavaScript 6连载】一、关于对象(访问)
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- jenkins2
创建工程 Eclipse创建工程:注意工程的路径,不是/home/svn,这个是svn的根目录. 是工程上传的路径,Apple直接下面有pom文件. 创建工程,创建一个任务就是创建一个工程. 需要注意 ...
- eHR自动同步获取LDAP中的邮箱地址
背景:公司里有eHR系统,有网域,IBM Lotus Notes邮件系统,新人入职会在eHR系统里提前建好档案,网域帐号.邮箱帐号均会在入职前提前建好,因为邮箱帐号是晚于eHR建档的,因此在eHR建档 ...
- JQuery ajax请求返回(parsererror)异常处理
目前在学习一个Java应用的框架,反编译后在执行时一直报错,界面上显示”parsererror”,经过JavaScript调试后发现更详细的错误提示信息是 Unexpected token ' in ...
- SpringMVC实现 MultipartFile 文件上传
1. Maven 工程引入所需要的依赖包 2. 页面需要开放多媒体标签 3. 配置文件上传试图解析器 4. 接收图片信息,通过 IO 流写入磁盘(调用解析其中的方法即可) 如下: 1.1 引入所依赖的 ...
- 10分钟看懂!基于Zookeeper的分布式锁
实现分布式锁目前有三种流行方案,分别为基于数据库.Redis.Zookeeper的方案,其中前两种方案网络上有很多资料可以参考,本文不做展开.我们来看下使用Zookeeper如何实现分布式锁. 什么是 ...
- K8S学习笔记之二进制的方式创建一个Kubernetes集群
0x00 单节点搭建和简述 minikube Minikube是一个工具,可以在本地快速运行一个单点的Kubernetes,尝试Kubernetes或日常开发的用户使用.不能用于生产环境. 官方地址: ...
- Kafka学习笔记之confluent platform入门
0x00 下载 http://www.confluent.io/download,打开后,显示最新版本3.0.0,然后在右边填写信息后,点击Download下载. 之后跳转到下载页面,选择zip 或者 ...
- php stomp.dll 下载地址
http://pecl.php.net/package/stomp/1.0.9/windows 查看方法,打开phpinfo