LeetCode - Is Graph Bipartite?
Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipartite if we can split it's set of nodes into two independent subsets A and B such that every edge in the graph has one node in A and another node in B. The graph is given in the following form: graph[i] is a list of indexes j for which the edge between nodes i and j exists. Each node is an integer between 0 and graph.length - 1. There are no self edges or parallel edges: graph[i] does not contain i, and it doesn't contain any element twice. Example 1:
Input: [[1,3], [0,2], [1,3], [0,2]]
Output: true
Explanation:
The graph looks like this:
0----1
| |
| |
3----2
We can divide the vertices into two groups: {0, 2} and {1, 3}.
Example 2:
Input: [[1,2,3], [0,2], [0,1,3], [0,2]]
Output: false
Explanation:
The graph looks like this:
0----1
| \ |
| \ |
3----2
We cannot find a way to divide the set of nodes into two independent subsets.
原来输入数组中的graph[i],表示顶点i所有相邻的顶点,比如对于例子1来说,顶点0和顶点1,3相连,顶点1和顶点0,2相连,顶点2和结点1,3相连,顶点3和顶点0,2相连。这道题让我们验证给定的图是否是二分图,所谓二分图,就是可以将图中的所有顶点分成两个不相交的集合,使得同一个集合的顶点不相连。为了验证是否有这样的两个不相交的集合存在,我们采用一种很机智的染色法,大体上的思路是要将相连的两个顶点染成不同的颜色,一旦在染的过程中发现有两连的两个顶点已经被染成相同的颜色,说明不是二分图。这里我们使用两种颜色,分别用1和-1来表示,初始时每个顶点用0表示未染色,然后遍历每一个顶点,如果该顶点未被访问过,则调用递归函数,如果返回false,那么说明不是二分图,则直接返回false。如果循环退出后没有返回false,则返回true。在递归函数中,如果当前顶点已经染色,如果该顶点的颜色和将要染的颜色相同,则返回true,否则返回false。如果没被染色,则将当前顶点染色,然后再遍历与该顶点相连的所有的顶点,调用递归函数,如果返回false了,则当前递归函数的返回false,循环结束返回true,参见代码如下:
class Solution {
public boolean isBipartite(int[][] graph) {
if(graph == null){
return false;
}
int v = graph.length;
//if we only have 2 vertices, then it's a Bipartite
if(v <= 2){
return true;
}
int[] colors = new int[v];
for(int i = 0; i < v; i++){
if(colors[i] == 0 && !valid(graph, i, 1, colors)){
return false;
}
}
return true;
} private boolean valid (int[][] graph, int cur, int color, int[] colors){
if(colors[cur] != 0){
return colors[cur] == color;
}
colors[cur] = color;
for(int i : graph[cur]){
if(!valid(graph, i, color * -1, colors)){
return false;
}
}
return true;
}
}
LeetCode - Is Graph Bipartite?的更多相关文章
- [LeetCode] Is Graph Bipartite? 是二分图么?
Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...
- 【LeetCode】785. Is Graph Bipartite? 解题报告(Python)
[LeetCode]785. Is Graph Bipartite? 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu. ...
- [leetcode]785. Is Graph Bipartite? [bai'pɑrtait] 判断二分图
Given an undirected graph, return true if and only if it is bipartite. Example 1: Input: [[1,3], [0, ...
- [LeetCode] 785. Is Graph Bipartite? 是二分图么?
Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...
- LeetCode 785. Is Graph Bipartite?
原题链接在这里:https://leetcode.com/problems/is-graph-bipartite/ 题目: Given an undirected graph, return true ...
- [LeetCode] 785. Is Graph Bipartite?_Medium tag: DFS, BFS
Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...
- [Swift]LeetCode785. 判断二分图 | Is Graph Bipartite?
Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...
- [LeetCode] Clone Graph 无向图的复制
Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...
- LeetCode OJ-- Clone Graph **@
https://oj.leetcode.com/problems/clone-graph/ 图的拷贝,就是给一个图,再弄出一个一模一样的来. /** * Definition for undirect ...
随机推荐
- Ubuntu下怎么编译并运行C、C++和Pascal语言?
很多同学在安装了Ubuntu的环境后,发现在Windows下的许多东西都打不开了,但是用网站上的在线IDE又不是很方便. 所以,ljn教你如何在Ubuntu下编译并运行C.C++和Pascal. 一. ...
- python实现用户登录界面
要求 输入用户名密码正确,提示登录成功, 输入三次密码错误,锁定账户. 实现原理: 创建两个文件accout,accout_lock accout记录用户名,密码 accout root 1qazxs ...
- compile openjdk7 in ubuntu OS
success: openjdk version "1.7.0-internal"OpenJDK Runtime Environment (build 1.7.0-internal ...
- ngnix笔记
ngnix可通过-s 参数控制,如quit正常退出:reload重载配置文件,具体参考:http://nginx.org/en/docs/switches.html ngnix的指令解释请参考这里:h ...
- java中String的认识
String不是Java的基本数据类型.String类是final类,故不可继承. String 和 StringBuffer之间的区别非常大,Java平台提供了两个类,两者都是包含多个字符的的字符数 ...
- 201621123001 《java程序设计》 第3周学习总结
1. 本周学习总结 初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之s间的联系.步骤如下: 1.1 写出 ...
- kubernetes 环境搭建(ubuntu16.04)
通过kubeadm安装kubernetes的教程:1: 首先在每台机器上安装: docker(1.12), kubeadm(1.6), kubectl, kubelet, kubernetes-cni ...
- L266 作文
With the rapid development of modem society, an increasing number of people are concerned about the ...
- C#窗体布局技巧
using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...
- GB2312汉字编码字符集对照表
第01区 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F A1A0 . . ・ ˉ ˇ ¨ " 々 ― - | - ' ' A1B0 &quo ...