POJ 3181 Dollar Dayz 【完全背包】
题意:
给出两个数,n,m,问m以内的整数有多少种组成n的方法
完全背包+大数划分
思路:
dp[i][j] := 用i种价格配出金额j的方案数。
那么dp[i][0] = 1,使用任何价格配出金额0的方案个数都是1(什么都不用)。
递推关系式:
实际上是完全背包问题,只是状态转移方程形式有所不同,不过状态转移的方向是完全相同的。
dp[i][j] = dp[i – 1][j] + dp[i – 1][j – i] + dp[i – 1][j – 2 * i] + … + dp[i – 1][0]
附: 01背包完全背包详解
#include <iostream>
#include <cstdio>
#include <string.h>
#include <string>
#include <algorithm>
using namespace std; unsigned long long a[105][1005],b[105][1005],inf=1; int main()
{
int n,m,i;
for(int i=0;i<18;i++)
inf*=10;
while(~scanf("%d%d",&n,&m))
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(i = 0;i<=m;i++)
{
a[i][0] = 1;// 使用任何价格配出金额0的方案个数都是1
}
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(j<i)
{
a[i][j]=a[i-1][j];
b[i][j]=b[i-1][j];
}
else
{ // 处理大数前面的部位,当超过int64时,就开始存入b数组,因为in64是9.22..*10^18次方,保证了两个a想加必定不超过in64
b[i][j]=(b[i-1][j]+b[i][j-i])+(a[i-1][j]+a[i][j-i])/inf;
a[i][j]=(a[i-1][j]+a[i][j-i])%inf;//保留后面的部份
}
}
}
if(b[m][n])
printf("%lld",b[m][n]);
printf("%lld\n",a[m][n]);
}
return 0;
}
POJ 3181 Dollar Dayz 【完全背包】的更多相关文章
- POJ 3181 Dollar Dayz(全然背包+简单高精度加法)
POJ 3181 Dollar Dayz(全然背包+简单高精度加法) id=3181">http://poj.org/problem?id=3181 题意: 给你K种硬币,每种硬币各自 ...
- POJ 3181 Dollar Dayz ( 完全背包 && 大数高精度 )
题意 : 给出目标金额 N ,问你用面额 1~K 拼成 N 的方案有多少种 分析 : 完全背包的裸题,完全背包在 DP 的过程中实际就是列举不同的装填方案数来获取最值的 故状态转移方程为 dp[i] ...
- POJ 3181 Dollar Dayz && Uva 147 Dollars(完全背包)
首先是 Uva 147:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_p ...
- poj 3181 Dollar Dayz(完全背包)
Dollar Dayz Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5419 Accepted: 2054 Descr ...
- poj 3181 Dollar Dayz(求组成方案的背包+大数)
可能nyist看见加的背包专题我老去凑热闹,觉得太便宜我了.他们新加的搜索专题居然有密码. 都是兄弟院校嘛!何必那么小气. 回到正题,跟我写的上一篇关于求组成方案的背包思路基本一样,无非就是一个二维费 ...
- POJ 3181 Dollar Dayz (完全背包,大数据运算)
题意:给出两个数,n,m,问1~m中的数组成n,有多少种方法? 这题其实就相当于 UVA 674 Coin Change,求解一样 只不过数据很大,需要用到高精度运算... 后来还看了网上别人的解法, ...
- POJ 3181 Dollar Dayz(高精度 动态规划)
题目链接:http://poj.org/problem?id=3181 题目大意:用1,2...K元的硬币,凑成N元的方案数. Sample Input 5 3 Sample Output 5 分析: ...
- poj 3181 Dollar Dayz (整数划分问题---递归+DP)
题目:http://poj.org/problem?id=3181 思路:将整数N划分为一系列正整数之和,最大不超过K.称为整数N的K划分. 递归:直接看代码: 动态规划:dp[i][j]:=将整数i ...
- poj 3181 Dollar Dayz
题意:给定一个数p,要求用K种币值分别为1,2,3...K的硬币组成p,问方案数,1,2,2和2,2,1算一种方案即与顺序无关,n <= 1000,k <= 100// 用完全背包做了 这 ...
随机推荐
- CodeForces - 455C Civilization (dfs+并查集)
http://codeforces.com/problemset/problem/455/C 题意 n个结点的森林,初始有m条边,现在有两种操作,1.查询x所在联通块的最长路径并输出:2.将结点x和y ...
- python学习笔记8--面向对象--属性和方法详解
属性: 公有属性 (属于类,每个类一份) 普通属性 (属于对象,每个对象一份) 私有属性 (属于对象,跟普通属性相似,只是不能通过对象直接访问) 方法:(按作用) 构造方法 析构函数 方法: ...
- linux4.10.8 内核移植(二)---初步裁剪、分区修改和文件系统
一.初步裁剪 在内核根目录下 执行: make menuconfig 1.1 system type裁剪 选择 SAMSUNG S3C24XX SoCs Support 进入其中,这里是配置我们的单板 ...
- nlogn LIS模板
nlogn 模板 最长上升 #include<bits/stdc++.h> using namespace std; ; int n,x,y,a[N],num[N],d[N],len; / ...
- 第16月第26天 /bin/bash^M: bad interpreter: 没有那个文件或目录
1. 运行脚本时出现了这样一个错误,打开之后并没有找到所谓的^M,查了之后才知道原来是文件格式的问题,也就是linux和windows之间的不完全兼容...具体细节不管,如果验证: vim test. ...
- 一个极好的JavaScript学习网址
JavaScript学习网址:https://javascript.info/ 网址界面如下,内容和排版都非常不错,内容也比较新,不像一些教程已经是好几年前的了.把这个教程浏览一遍,能够解答很多看代码 ...
- Linux用户组相关指令
⒈增加用户组 ①groupadd 用户组名 ⒉删除用户组 ①groupdel 用户组名 ⒊修改用户所在的用户组 ①usermod -g 用户组 用户名 ★用户和用户组的相关文件 ①/etc/passw ...
- startup_MK64F12.s文件解析
1.前言 本文主要对freescale芯片 MK64F12的启动汇编文件进行注释解析. 2.文件注释 /* ---------------------------------------------- ...
- 一个优秀的 ring buffer 或 cycle buffer 的实现代码
#define CIRCLE_BUFFSIZE 1024 * 1024#define min(x, y) ((x) < (y) ? (x) : (y)) struct cycle_buffer ...
- Jenkins与网站代码上线解决方案【转】
转自 Jenkins与网站代码上线解决方案 - 惨绿少年 https://www.nmtui.com/clsn/lx524.html 1.1 前言 Jenkins是一个用Java编写的开源的持续集成工 ...