欢迎访问~原文出处——博客园-zhouzhendong

去博客园看该题解


题目传送门 - BZOJ3674


题意概括

n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0

0<n,m<=2*10^4


题解

  上板子


代码

#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
using namespace std;
const int N=200005;
bool isd(char ch){
return '0'<=ch&&ch<='9';
}
void read(int &x){
x=0;
char ch=getchar();
while (!isd(ch))
ch=getchar();
while (isd(ch))
x=x*10+ch-48,ch=getchar();
}
int n,m,size,root[N],fa[N*50],ls[N*50],rs[N*50],depth[N*50];
int build(int L,int R){
int rt=++size;
if (L==R){
fa[rt]=L,depth[rt]=0;
return rt;
}
int mid=(L+R)>>1;
ls[rt]=build(L,mid);
rs[rt]=build(mid+1,R);
return rt;
}
int query(int rt,int le,int ri,int pos){
if (le==ri)
return rt;
int mid=(le+ri)>>1;
if (pos<=mid)
return query(ls[rt],le,mid,pos);
else
return query(rs[rt],mid+1,ri,pos);
}
void Modify(int prt,int &rt,int le,int ri,int pos,int val){
rt=++size;
if (le==ri){
fa[rt]=val;
depth[rt]=depth[prt];
return;
}
ls[rt]=ls[prt],rs[rt]=rs[prt];
int mid=(le+ri)>>1;
if (pos<=mid)
Modify(ls[prt],ls[rt],le,mid,pos,val);
else
Modify(rs[prt],rs[rt],mid+1,ri,pos,val);
}
void add(int rt,int le,int ri,int pos){
if (le==ri){
depth[rt]++;
return;
}
int mid=(le+ri)>>1;
if (pos<=mid)
add(ls[rt],le,mid,pos);
else
add(rs[rt],mid+1,ri,pos);
}
int find(int rt,int pos){
int p=query(rt,1,n,pos);
if (pos==fa[p])
return p;
return find(rt,fa[p]);
}
int main(){
size=0;
read(n),read(m);
root[0]=build(1,n);
int lastans=0;
for (int i=1;i<=m;i++){
int op,a,b;
root[i]=root[i-1];
read(op),read(a);
a^=lastans;
if (op==1){
read(b);
b^=lastans;
a=find(root[i],a),b=find(root[i],b);
if (fa[a]==fa[b])
continue;
if (depth[a]>depth[b])
swap(a,b);
Modify(root[i-1],root[i],1,n,fa[a],fa[b]);
if (depth[a]==depth[b])
add(root[i],1,n,fa[b]);
}
else if (op==2)
root[i]=root[a];
else {
root[i]=root[i-1];
read(b);
b^=lastans;
a=find(root[i],a),b=find(root[i],b);
printf("%d\n",lastans=fa[a]==fa[b]);
}
}
return 0;
}

  

BZOJ3674 可持久化并查集加强版 可持久化 并查集的更多相关文章

  1. 【BZOJ3673/3674】可持久化并查集/可持久化并查集加强版 可持久化线段树

    [BZOJ3674]可持久化并查集加强版 Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了! ...

  2. BZOJ 3673 可持久化并查集 by zky && BZOJ 3674 可持久化并查集加强版 可持久化线段树

    既然有了可持久化数组,就有可持久化并查集.. 由于上课讲过说是只能按秩合并(但是我也不确定...),所以就先写了按秩合并,相当于是维护fa[]和rk[] getf就是在这棵树中找,直到找到一个点的fa ...

  3. bzoj 3674 可持久化并查集加强版——可持久化并查集

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3674 用主席树维护 fa[ ]  和 siz[ ] .改 fa[ ] 和改 siz[ ] 都 ...

  4. BZOJ 3674 可持久化并查集加强版 可持久化并查集

    题目大意:同3673 强制在线 同3673 仅仅只是慢了一些0.0 这道题仅仅写路径压缩比仅仅写启示式合并要快一点点 两个都写就慢的要死0.0 改代码RE的可能是内存不够 #include<cs ...

  5. bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版

    bzoj3673可持久化并查集 by zky 题意: 维护可以恢复到第k次操作后的并查集. 题解: 用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以 ...

  6. 【bzoj3674】 可持久化并查集加强版

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 (题目链接) 题意 维护并查集3个操作:合并:回到完成第k个操作后的状态:查询. Soluti ...

  7. BZOJ 3674 可持久化并查集加强版(路径压缩版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  8. BZOJ 3674 可持久化并查集加强版(按秩合并版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

  9. 【BZOJ】【3673】可持久化并查集 & 【3674】可持久化并查集加强版

    可持久化并查集 Orz hzwer & zyf 呃学习了一下可持久化并查集的姿势……其实并查集就是一个fa数组(可能还要带一个size或rank数组),那么我们对并查集可持久化其实就是实现一个 ...

随机推荐

  1. JavaScript之DOM等级概述

    这两日对DOM等级的理解不是太通透,就进Mozilla官网去看了一下,然后进行了首次的对技术文档的翻译工作,虽然官网也有中文解释,但我想,自己翻译出来时,已经有了原汁原味的理解了吧,这边是做此次翻译的 ...

  2. [JXOI2018]游戏 (线性筛,数论)

    [JXOI2018]游戏 \(solution:\) 这一道题的原版题面实在太负能量了,所以用了修改版题面. 这道题只要仔细读题,我们就可以将题目的一些基本性质分析出来:首先我们定义:对于某一类都可以 ...

  3. 【金色】种瓜得瓜,种豆得豆 Gym - 102072H (线段树)

    题目链接:https://cn.vjudge.net/problem/Gym-102072H 题目大意:中文题目 具体思路:通过两棵线段树来维护,第一棵线段树来维护当前坐标的点的日增长速度(默认每一年 ...

  4. mysql 案例 ~ pt-archiver 归档工具的使用

    一 简介:今天咱们来聊聊pt-archiver的使用 二 相关参数 相关参数1   --statistics 结束的时候给出统计信息:开始的时间点,结束的时间点,查询的行数,归档的行数,删除的行数,以 ...

  5. C 语言 register 关键字

    register:这个关键字请求编译器尽可能的将变量存在CPU内部寄存器中,而不是通过内存寻址访问,以提高效率.注意是尽可能,不是绝对.你想想,一个CPU 的寄存器也就那么几个或几十个,你要是定义了很 ...

  6. WPF复制异常问题(OpenClipboard 失败 (异常来自 HRESULT:0x800401D0 (CLIPBRD_E_CANT_OPEN)))

    最近在维护WPF系统的时候发现的问题,刚刚开始自己的电脑都不能重现,后面写日志跟踪才发现问题的所在.问题主要是由于:1.   在程序访问剪切板的时候,有其他程序正在占用剪切板,导致自己的程序无法访问, ...

  7. Difference between plt.draw() and plt.show() in matplotlib

    Difference between plt.draw() and plt.show() in matplotlib down voteaccepted plt.show() will display ...

  8. centos6安装python3.6.4

    安装Python依赖包: [root@Python src]# yum install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlit ...

  9. python2.7源码或第三方包里埋藏的坑(持续更新)

    1.psutil包,aix环境下,如果进程命令过长的话,程序无法取得完整的进程命令,测试代码如下 import psutil proc=psutil.Process(11534558) pidDict ...

  10. insmod 时报错“Unknown symbol”问题的解决

    在加载驱动模块时报错: “ Unknown symbol CFG80211_SupBandReInit (err 0)” 查看了内核代码以及加载上的symbol(命令为 cat /proc/kalls ...