Within K stops 最短路径 Cheapest Flights Within K Stops
2018-09-19 22:34:28
问题描述:
问题求解:
本题是典型的最短路径的扩展题,可以使用Bellman Ford算法进行求解,需要注意的是在Bellman Ford算法的时候需要额外申请一个数组来保存变量。
int inf = (int)1e9;
public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
// write your code here
int[] dist = new int[n];
Arrays.fill(dist, inf);
dist[src] = 0;
for (int i = 0; i <= K; i++) {
int[] prev = Arrays.copyOf(dist, n);
for (int[] e : flights) {
int from = e[0];
int to = e[1];
int w = e[2];
if (prev[to] > prev[from] + w) {
dist[to] = prev[from] + w;
}
}
}
return dist[dst] == inf ? -1 : dist[dst];
}
Within K stops 最短路径 Cheapest Flights Within K Stops的更多相关文章
- [Swift]LeetCode787. K 站中转内最便宜的航班 | Cheapest Flights Within K Stops
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- [LeetCode] Cheapest Flights Within K Stops K次转机内的最便宜的航班
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- [LeetCode] 787. Cheapest Flights Within K Stops K次转机内的最便宜航班
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- 787. Cheapest Flights Within K Stops
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- LeetCode 787. Cheapest Flights Within K Stops
原题链接在这里:https://leetcode.com/problems/cheapest-flights-within-k-stops/ 题目: There are n cities connec ...
- 【LeetCode】787. Cheapest Flights Within K Stops 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 方法一:DFS 方法二:BFS 参考资料 日期 题目 ...
- [LeetCode] 787. Cheapest Flights Within K Stops_Medium tag: Dynamic Programming, BFS, Heap
There are n cities connected by m flights. Each fight starts from city u and arrives at v with a pri ...
- K条最短路径算法(KSP, k-shortest pathes):Yen's Algorithm
参考: K最短路径算法之Yen's Algorithm Yen's algorithm 基于网络流量的SDN最短路径转发应用 K条最短路径算法:Yen's Algorithm 算法背景 K 最短路径问 ...
- 给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除。
题目描述: 给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除. 输入: 两个整数n(2<=n<=1000),a(2<=a<=1000) 输出: 一个整数. ...
随机推荐
- Hibernate properties文件
###################### ### Query Language ### ###################### ## define query language consta ...
- linux内核中的两个标记GFP_KERNEL和GFP_ATOMIC是用来干什么的?
1. 作用 用来标记分配内核空间内存时的方式 2. 两个标记使用在什么场合? 如果内存不够时,会等待内核释放内存,直到可以分配相应大小的内存,也就意味着会发生阻塞,因此不能使用在中断处理函数中,而GF ...
- bozoj3131: [Sdoi2013]淘金 数位dp
链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3131 思路 1. 函数值的素因子只有2.3.5.7 由他们组成的状态不多,爆搜的时候即使搜不 ...
- P4450 双亲数
思路 同zap-queries 莫比乌斯反演的板子 数据范围小到不用整除分块... 代码 #include <cstdio> #include <algorithm> #inc ...
- 论文笔记:Person Re-identification with Deep Similarity-Guided Graph Neural Network
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: ...
- slot是标签的内容扩展,也就是说你用slot就可以在自定义组件时传递给组件内容,组件接收内容并输出
html 父页面<div id="app"> <register> <span slot="name">{{message. ...
- [implements] - 一个接口的使用
4种货物,如何使用一个接口实现CRUD: package com.tansuo365.test1.service.goods; import com.tansuo365.test1.entity.Go ...
- Docker 开发最佳实践
Docker development best practices The following development patterns have proven to be helpful for p ...
- Visual studio 离线安装
VS2017在下载好安装程序安装的时候,会根据你选择的功能模块来下载所需要的安装程序,而这些安装程序的下载位置并不会让你选择,而是直接放在 C:\ProgramData\Microsoft\Visua ...
- .NET下使用 Seq结构化日志系统
前言 我们公司在日志管理方面一直没有统一,主要痛点有: 每个开发人员都是各用各的,存储日志的形式也是五花八门,如:本地文件,数据库,Redis,MongoDB 由于公司访问服务器要通过堡垒机,所以本机 ...