快速傅里叶变换及其C程序

《快速傅里叶变换及其C程序》是中国科学技术大学出版社出版的。本书系统地介绍了傅里叶变换的理论和技术,内容包括傅里叶变换(FT)的定义、存在条件及其性质,离散傅里叶变换(DFT)的定义、性质及由离散引起的频谱混叠和渗漏,快速傅里叶变换(FFT)算法的基本原理和复序列基2算法及其实用程序,并以此为基础,给出了实序列DFT、正弦变换、余弦变换、傅里叶级数、谱函数近似、功率谱估计、卷积和相关等的快速算法和实用程序,给出了 2D—DFT的行列算法、二维实序列2D—DFT的行列算法和存储技术、3D—DFT的似行列算法、3D—DFT实序列降维算法和它们的实用程序。这些皆容易推广应用于更高维DFT的快速计算。
 

1内容简介

本书可作为理工科研究生、本科高年级学生,特别是计算数学和应用软件、数字信号处理专业学生的教材或参考书,也可供相关工程技术人员参考。

2目录

第1章 Fourier变换
1.1 周期函数的Fourier级数
1.1.1 三角级数及其正交性
1.1.2 周期函数的Fourier级数
1.1.3 Fourier级数的收敛问题
1.1.4 函数的Fourier级数展开
1.1.5 Fourier级数的复数形式
1.1.6 周期函数的最佳逼近
1.2 Fourier积分
1.2.1 Fourier级数和Fourier积分
1.2.2 Fourier积分的收敛问题
1.2.3 Fourier积分的复数形式
1.3 Fourier变换
1.3.1 Fourier变换的定义
1.3.2 Fourier变换存在条件
1.3.3 正弦变换和余弦变换
1.3.4 Fourier变换的常用形式
1.4 Fourier变换实例
1.4.1 初等函数Fourier变换实例
1.4.2 广义函数简介
1.4.3 δ函数及其谱函数
1.5 Fourier变换的对称性
1.5.1 对称关系
1.5.2 双实函数的Fourier变换
1.6 Fourier变换的性质
1.6.1 基本性质
1.6.2 卷积和相关定理
1.6.3 Parseval定理
习题一
第2章 离散Fourier变换
2.1 离散时间序列的Fourier变换
2.1.1 离散时间序列的Fourier变换
2.1.2 DTFT的基本性质
2.1.3 卷积和相关定理
2.2 离散Fourier变换定义
2.2.1 Fourier变换的离散化
2.2.2 离散Fourier变换的定义
2.2.3 离散Fourier变换的常用形式
2.3 DFT的性质
2.3.1 DFT的基本性质
2.3.2 离散卷积和离散相关
2.3.3 一些特殊序列的DFT
2.3.4 实序列DFT技术
2.4 离散正弦变换和离散余弦变换
2.4.1 离散正弦变换
2.4.2 离散余弦变换
2.5 离散Fourier级数
2.5.1 离散最佳平方逼近
2.5.2 离散Fourier级数
2.6 Fourier变换的离散误差
2.6.1 离散取样与频谱混叠
2.6.2 有限窗宽和频谱渗漏
2.6.3 连续与离散Fourier变换的关系
习题二
第3章 DFT快速计算(FFT)
第4章 卷积及其快速算法
第5章 多维Fourier变换及其快速算法
附录 程序索引
参考资料

研究傅里叶变换的一本好书<<快速傅里叶变换及其C程序>>的更多相关文章

  1. 傅里叶变换通俗解释及快速傅里叶变换的python实现

    通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...

  2. FFT算法实现——基于GPU的基2快速傅里叶变换

    最近做一个东西,要用到快速傅里叶变换,抱着蛋疼的心态,自己尝试写了一下,遇到一些问题. 首先看一下什么叫做快速傅里叶变换(FFT)(来自Wiki): 快速傅里叶变换(英语:Fast Fourier T ...

  3. 快速傅里叶变换(FFT)算法【详解】

    快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章 ...

  4. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  5. 快速傅里叶变换(FFT)详解

    本文只讨论FFT在信息学奥赛中的应用 文中内容均为个人理解,如有错误请指出,不胜感激 前言 先解释几个比较容易混淆的缩写吧 DFT:离散傅里叶变换—>$O(n^2)$计算多项式乘法 FFT:快速 ...

  6. 快速傅里叶变换(FFT)_转载

    FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首 ...

  7. 快速傅里叶变换(FFT)学习笔记(未完待续)

    目录 参考资料 FFT 吹水 例题 普通做法 更高大尚的做法 定义与一部分性质 系数表达式 点值表达式 点值相乘??? 卷积 复数 单位根 DFT IDFT 蝴蝶迭代优化 单位根求法 实现.细节与小优 ...

  8. 快速傅里叶变换(Fast-Fourier Transform,FFT)

    数学定义: (详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_Pb ...

  9. 【笔记篇】(理论向)快速傅里叶变换(FFT)学习笔记w

    现在真是一碰电脑就很颓废啊... 于是早晨把电脑锁上然后在旁边啃了一节课多的算导, 把FFT的基本原理整明白了.. 但是我并不觉得自己能讲明白... Fast Fourier Transformati ...

随机推荐

  1. 《剑指offer》-整数中1出现的次数

    题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...

  2. [HAOI2016]放棋子

    题解: 刚开始没有仔细看题目.. 后来发现障碍是每行每列有且只有一个 那么其实会发现这就是一道错排的题目 f[i]=(n-1)*(f[i-1]+f[i-2])

  3. 快速幂-hdu1097

    题目描述: 题目大意:给出两个数,求出a^b的最后一个数字. 代码实现: #include<stdio.h> using namespace std; int pow(int a,int ...

  4. 008.Docker Flannel+Etcd分布式网络部署

    一 环境准备 1.1 Flannel概述 Flannel是一种基于overlay网络的跨主机容器网络解决方案,即将TCP数据包封装在另一种网络包里面进行路由转发和通信,Flannel是CoreOS开发 ...

  5. 智能优化 之 下山单纯形法 C++

    单纯形法简介在其他网站上都可以查到,我就不多说了 我们主要说方法 它主要解决的是局部最优解的问题 利用多边形进行求解的,若有n个变量,则利用n+1边形 我们这里以两个变量为例,求解第三维度的最优解 例 ...

  6. MyBatis学习笔记3--使用XML配置SQL映射器

    <resultMap type="Student" id="StudentResult"> <id property="id&quo ...

  7. hashCode方法的作用?

    (1)前言,想要明白hashCode的作用,你必须要先知道Java中的集合. Java中的集合(Collection)有两类,一类是List,再有一类是Set. 前者集合内的元素是有序的,元素可以重复 ...

  8. RBF(径向基)神经网络

    只要模型是一层一层的,并使用AD/BP算法,就能称作 BP神经网络.RBF 神经网络是其中一个特例.本文主要包括以下内容: 什么是径向基函数 RBF神经网络 RBF神经网络的学习问题 RBF神经网络与 ...

  9. 洛谷.2219.[HAOI2007]修筑绿化带(单调队列)

    题目链接 洛谷 COGS.24 对于大的矩阵可以枚举:对于小的矩阵,需要在满足条件的区域求一个矩形和的最小值 预处理S2[i][j]表示以(i,j)为右下角的C\(*\)D的矩阵和, 然后对于求矩形区 ...

  10. 【原创】python模拟腾讯网页登录

    近日,研究Tencent网页模拟登录的过程,过程有些忐忑,但最终还是实现了这一功能.先将结果写于此,供大家参考: 其加密过程在c_login_old.js文件中执行,将JS关键代码提取出来如下: fu ...