Spark实现K-Means算法
K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。
MLlib实现K-Means算法的原理是,运行多个K-Means算法,每个称为run,返回最好的那个聚类的类簇中心。初始的类簇中心,可以是随机的,也可以是KMean||得来的,迭代达到一定的次数,或者所有run都收敛时,算法就结束。
用Spark实现K-Means算法,首先修改pom文件,引入机器学习MLlib包:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>1.6.0</version>
</dependency>
代码:
import org.apache.log4j.{Level,Logger}
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors object Kmeans {
def main(args:Array[String]) = {
// 屏蔽日志
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.apache.jetty.server").setLevel(Level.OFF) // 设置运行环境
val conf = new SparkConf().setAppName("K-Means").setMaster("spark://master:7077")
.setJars(Seq("E:\\Intellij\\Projects\\SimpleGraphX\\SimpleGraphX.jar"))
val sc = new SparkContext(conf) // 装载数据集
val data = sc.textFile("hdfs://master:9000/kmeans_data.txt", 1)
val parsedData = data.map(s => Vectors.dense(s.split(" ").map(_.toDouble))) // 将数据集聚类,2个类,20次迭代,形成数据模型
val numClusters = 2
val numIterations = 20
val model = KMeans.train(parsedData, numClusters, numIterations) // 数据模型的中心点
println("Cluster centres:")
for(c <- model.clusterCenters) {
println(" " + c.toString)
} // 使用误差平方之和来评估数据模型
val cost = model.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + cost) // 使用模型测试单点数据
println("Vectors 7.3 1.5 10.9 is belong to cluster:" + model.predict(Vectors.dense("7.3 1.5 10.9".split(" ")
.map(_.toDouble))))
println("Vectors 4.2 11.2 2.7 is belong to cluster:" + model.predict(Vectors.dense("4.2 11.2 2.7".split(" ")
.map(_.toDouble))))
println("Vectors 18.0 4.5 3.8 is belong to cluster:" + model.predict(Vectors.dense("1.0 14.5 73.8".split(" ")
.map(_.toDouble)))) // 返回数据集和结果
val result = data.map {
line =>
val linevectore = Vectors.dense(line.split(" ").map(_.toDouble))
val prediction = model.predict(linevectore)
line + " " + prediction
}.collect.foreach(println) sc.stop
}
}
使用textFile()方法装载数据集,获得RDD,再使用KMeans.train()方法根据RDD、K值和迭代次数得到一个KMeans模型。得到KMeans模型以后,可以判断一组数据属于哪一个类。具体方法是用Vectors.dense()方法生成一个Vector,然后用KMeans.predict()方法就可以返回属于哪一个类。
运行结果:
Cluster centres:
[6.062499999999999,6.7124999999999995,11.5]
[3.5,12.2,60.0]
Within Set Sum of Squared Errors = 943.2074999999998
Vectors 7.3 1.5 10.9 is belong to cluster:0
Vectors 4.2 11.2 2.7 is belong to cluster:0
Vectors 18.0 4.5 3.8 is belong to cluster:1
0.0 0.0 5.0 0
0.1 10.1 0.1 0
1.2 5.2 13.5 0
9.5 9.0 9.0 0
9.1 9.1 9.1 0
19.2 9.4 29.2 0
5.8 3.0 18.0 0
3.5 12.2 60.0 1
3.6 7.9 8.1 0
Spark实现K-Means算法的更多相关文章
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- K-means算法
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢? ...
- spark Bisecting k-means(二分K均值算法)
Bisecting k-means(二分K均值算法) 二分k均值(bisecting k-means)是一种层次聚类方法,算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二.之后选择能最大程 ...
- Spark中常用的算法
Spark中常用的算法: 3.2.1 分类算法 分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类.分类在数据挖掘中是一项重要 ...
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- 《机器学习实战》学习笔记一K邻近算法
一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...
- [Machine-Learning] K临近算法-简单例子
k-临近算法 算法步骤 k 临近算法的伪代码,对位置类别属性的数据集中的每个点依次执行以下操作: 计算已知类别数据集中的每个点与当前点之间的距离: 按照距离递增次序排序: 选取与当前点距离最小的k个点 ...
- k近邻算法的Java实现
k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后, ...
- 基本分类方法——KNN(K近邻)算法
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...
- 聚类算法:K-means 算法(k均值算法)
k-means算法: 第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设 ...
随机推荐
- python 全栈开发,Day57(响应式页面-@media介绍,jQuery补充,移动端单位介绍,Bootstrap学习)
昨日内容回顾 ajax //get post 两种方式 做 请求 get 主要是获取数据 post 提交数据 同一个路由地址 既可以是get请求也可以是post请求 一个路由对应一个函数 get请求 ...
- python 全栈开发,Day40(进程间通信(队列和管道),进程间的数据共享Manager,进程池Pool)
昨日内容回顾 进程 multiprocess Process —— 进程 在python中创建一个进程的模块 start daemon 守护进程 join 等待子进程执行结束 锁 Lock acqui ...
- C#--整型与字节数组byte[]之间的转换
using System; int i = 123;byte [] intBuff = BitConverter.GetBytes(i); // 将 int 转换成字节数组lob.Write ...
- oracle中游标详细用法
转自:http://blog.csdn.net/liyong199012/article/details/8948952 游标的概念: 游标是SQL的一个内存工作区,由系统或用户以变量的形式定 ...
- RabbitMQ(二):Java 操作队列
1. 简单模式 模型: P:消息的生产者 队列:rabbitmq C:消息的消费者 获取 MQ 连接 public static Connection getConnection() throws I ...
- bootstrap 列表--水平定义列表
水平定义列表就像内联列表一样,Bootstrap可以给<dl>添加类名“.dl-horizontal”给定义列表实现水平显示效果. @media (min-width: 768px) { ...
- [CodeChef]GERALD07/[JZOJ4739]Ztxz16学图论
题解: 考虑从小到大枚举右端点 对于每个点,令它的权值等于它的编号 那么我们可以用lct维护出一颗最大生成树 维护方法是每次插入一条判断他们在不在一颗树上 若不在直接加,若在就找到链上的最小值 之后看 ...
- c++ primer 笔记 (四)
现代C++程序应尽量使用vector和迭代器类型,而避免使用低级的数组和指针. 设计良好的程序只有在强调速度时才在类实现的内部实现数组和指针. 更多地使用vector来取代数组,数组被严格限制于程 ...
- asp.net core 微信获取用户openid
获取openid流程为首先根据微信开发参数构造AuthorizeUrl认证链接,用户跳转到该链接进行授权,授权完成将跳转到回调页(首次认证需要授权,后面将直接再跳转至回调页),此时回调页中带上一个GE ...
- (转)final修饰基本类型和引用类型变量的区别
原文:http://blog.csdn.net/linhao19891124/article/details/52971045 当使用final修饰基本类型变量时,不能对基本类型变量重新赋值,因此基本 ...