看看Flink cep如何将pattern转换为NFA?

当来了一条event,如果在NFA中执行的?

前面的链路,CEP –> PatternStream –> select –> CEPOperatorUtils.createPatternStream

1. 产生NFACompiler.compileFactory,完成pattern到state的转换

final NFACompiler.NFAFactory<T> nfaFactory = NFACompiler.compileFactory(pattern, inputSerializer, false);
            final NFAFactoryCompiler<T> nfaFactoryCompiler = new NFAFactoryCompiler<>(pattern);
nfaFactoryCompiler.compileFactory();
return new NFAFactoryImpl<>(inputTypeSerializer, nfaFactoryCompiler.getWindowTime(), nfaFactoryCompiler.getStates(), timeoutHandling);
调用,nfaFactoryCompiler.compileFactory
        void compileFactory() {
// we're traversing the pattern from the end to the beginning --> the first state is the final state
State<T> sinkState = createEndingState();
// add all the normal states
sinkState = createMiddleStates(sinkState);
// add the beginning state
createStartState(sinkState);
}
可以看到做的工作,主要是生成state,即把pattern转换为NFA中的state和stateTransition
因为加pattern的是不断往后加,通过private final Pattern<T, ? extends T> previous来指向前面的pattern,所以在遍历pattern的时候只能回溯
先创建最后的final state
        private State<T> createEndingState() {
State<T> endState = createState(ENDING_STATE_NAME, State.StateType.Final);
windowTime = currentPattern.getWindowTime() != null ? currentPattern.getWindowTime().toMilliseconds() : 0L;
return endState;
}
很简单,就单纯的创建state
        private State<T> createState(String name, State.StateType stateType) {
String stateName = getUniqueInternalStateName(name);
usedNames.add(stateName);
State<T> state = new State<>(stateName, stateType);
states.add(state);
return state;
}
 
继续加middle的state,
        private State<T> createMiddleStates(final State<T> sinkState) {
State<T> lastSink = sinkState; //记录上一个state
while (currentPattern.getPrevious() != null) { checkPatternNameUniqueness(currentPattern.getName());
lastSink = convertPattern(lastSink); //convert pattern到state // we traverse the pattern graph backwards
followingPattern = currentPattern;
currentPattern = currentPattern.getPrevious(); //往前回溯 final Time currentWindowTime = currentPattern.getWindowTime();
if (currentWindowTime != null && currentWindowTime.toMilliseconds() < windowTime) {
// the window time is the global minimum of all window times of each state
windowTime = currentWindowTime.toMilliseconds();
}
}
return lastSink;
}
调用convertPattern,
        private State<T> convertPattern(final State<T> sinkState) {
final State<T> lastSink; lastSink = createSingletonState(sinkState); //只看singleton state
addStopStates(lastSink); return lastSink;
}
 
createSingletonState
        private State<T> createSingletonState(final State<T> sinkState, final IterativeCondition<T> ignoreCondition, final boolean isOptional) {
final IterativeCondition<T> currentCondition = (IterativeCondition<T>) currentPattern.getCondition(); //从pattern里面取出condition
final IterativeCondition<T> trueFunction = BooleanConditions.trueFunction(); final State<T> singletonState = createState(currentPattern.getName(), State.StateType.Normal); //对currentPattern创建singletonState
// if event is accepted then all notPatterns previous to the optional states are no longer valid
singletonState.addTake(sink, currentCondition); //设置take StateTransition if (isOptional) {
// if no element accepted the previous nots are still valid.
singletonState.addProceed(sinkState, trueFunction); //如果有Optional,设置Proceed StateTransition
} return singletonState;
}
addTake
addStateTransition
    public void addStateTransition(
final StateTransitionAction action,
final State<T> targetState,
final IterativeCondition<T> condition) {
stateTransitions.add(new StateTransition<T>(this, action, targetState, condition));
}
 
createStartState
        private State<T> createStartState(State<T> sinkState) {
checkPatternNameUniqueness(currentPattern.getName());
final State<T> beginningState = convertPattern(sinkState);
beginningState.makeStart();
return beginningState;
}
 
 
2. 当event coming,如何处理?
AbstractKeyedCEPPatternOperator.processElement
            NFA<IN> nfa = getNFA();
processEvent(nfa, element.getValue(), getProcessingTimeService().getCurrentProcessingTime());
updateNFA(nfa);
 
如果statebackend里面有就取出来,否则nfaFactory.createNFA
    private NFA<IN> getNFA() throws IOException {
NFA<IN> nfa = nfaOperatorState.value();
return nfa != null ? nfa : nfaFactory.createNFA();
}
 
createNFA
    NFA<T> result =  new NFA<>(inputTypeSerializer.duplicate(), windowTime, timeoutHandling);
result.addStates(states);
 
addState
    public void addStates(final Collection<State<T>> newStates) {
for (State<T> state: newStates) {
addState(state);
}
} public void addState(final State<T> state) {
states.add(state); if (state.isStart()) {
computationStates.add(ComputationState.createStartState(this, state));
}
}
把states加入到NFA,
start state会加入computationStates,因为pattern的识别总是从start开始
 
KeyedCEPPatternOperator – > processEvent
    protected void processEvent(NFA<IN> nfa, IN event, long timestamp) {
Tuple2<Collection<Map<String, List<IN>>>, Collection<Tuple2<Map<String, List<IN>>, Long>>> patterns =
nfa.process(event, timestamp); emitMatchedSequences(patterns.f0, timestamp);
}
 
NFA –> process
    public Tuple2<Collection<Map<String, List<T>>>, Collection<Tuple2<Map<String, List<T>>, Long>>> process(final T event, final long timestamp) {
final int numberComputationStates = computationStates.size();
final Collection<Map<String, List<T>>> result = new ArrayList<>();
final Collection<Tuple2<Map<String, List<T>>, Long>> timeoutResult = new ArrayList<>(); // iterate over all current computations
for (int i = 0; i < numberComputationStates; i++) { //遍历所有的当前state
ComputationState<T> computationState = computationStates.poll(); //poll一个state final Collection<ComputationState<T>> newComputationStates; newComputationStates = computeNextStates(computationState, event, timestamp); //通过NFA计算下一批的state //delay adding new computation states in case a stop state is reached and we discard the path.
final Collection<ComputationState<T>> statesToRetain = new ArrayList<>(); //newComputationStates中有可能是stop state,所以不一定会放到statesToRetain
//if stop state reached in this path
boolean shouldDiscardPath = false;
for (final ComputationState<T> newComputationState: newComputationStates) {
if (newComputationState.isFinalState()) { //如果是final state,说明完成匹配
// we've reached a final state and can thus retrieve the matching event sequence
Map<String, List<T>> matchedPattern = extractCurrentMatches(newComputationState);
result.add(matchedPattern); // remove found patterns because they are no longer needed
eventSharedBuffer.release(
newComputationState.getPreviousState().getName(),
newComputationState.getEvent(),
newComputationState.getTimestamp(),
computationState.getCounter());
} else if (newComputationState.isStopState()) { //如果是stop state,那么删除该path
//reached stop state. release entry for the stop state
shouldDiscardPath = true;
eventSharedBuffer.release(
newComputationState.getPreviousState().getName(),
newComputationState.getEvent(),
newComputationState.getTimestamp(),
computationState.getCounter());
} else { //中间状态,放入statesToRetain
// add new computation state; it will be processed once the next event arrives
statesToRetain.add(newComputationState);
}
} if (shouldDiscardPath) { //释放discardPath
// a stop state was reached in this branch. release branch which results in removing previous event from
// the buffer
for (final ComputationState<T> state : statesToRetain) {
eventSharedBuffer.release(
state.getPreviousState().getName(),
state.getEvent(),
state.getTimestamp(),
state.getCounter());
}
} else { //将中间state加入computationStates
computationStates.addAll(statesToRetain);
} } // prune shared buffer based on window length
if (windowTime > 0L) { //prune超时过期的pattern
long pruningTimestamp = timestamp - windowTime; if (pruningTimestamp < timestamp) {
// the check is to guard against underflows // remove all elements which are expired
// with respect to the window length
eventSharedBuffer.prune(pruningTimestamp);
}
} return Tuple2.of(result, timeoutResult);
}
 
computeNextStates
 
    private Collection<ComputationState<T>> computeNextStates(
final ComputationState<T> computationState,
final T event,
final long timestamp) { final OutgoingEdges<T> outgoingEdges = createDecisionGraph(computationState, event); //找出state的所有出边 final List<StateTransition<T>> edges = outgoingEdges.getEdges(); final List<ComputationState<T>> resultingComputationStates = new ArrayList<>();
for (StateTransition<T> edge : edges) {
switch (edge.getAction()) {
case IGNORE: {
if (!computationState.isStartState()) {
final DeweyNumber version;
if (isEquivalentState(edge.getTargetState(), computationState.getState())) {
//Stay in the same state (it can be either looping one or singleton)
final int toIncrease = calculateIncreasingSelfState(
outgoingEdges.getTotalIgnoreBranches(),
outgoingEdges.getTotalTakeBranches());
version = computationState.getVersion().increase(toIncrease);
} else {
//IGNORE after PROCEED
version = computationState.getVersion()
.increase(totalTakeToSkip + ignoreBranchesToVisit)
.addStage();
ignoreBranchesToVisit--;
} addComputationState( //对于ignore state,本身不用take,把target state加到computation state中
resultingComputationStates,
edge.getTargetState(),
computationState.getPreviousState(),
computationState.getEvent(),
computationState.getCounter(),
computationState.getTimestamp(),
version,
computationState.getStartTimestamp()
);
}
}
break;
case TAKE:
final State<T> nextState = edge.getTargetState();
final State<T> currentState = edge.getSourceState();
final State<T> previousState = computationState.getPreviousState(); final T previousEvent = computationState.getEvent(); final int counter;
final long startTimestamp;
//对于take,需要把当前state记录到path里面,即放到eventSharedBuffer
if (computationState.isStartState()) {
startTimestamp = timestamp;
counter = eventSharedBuffer.put(
currentState.getName(),
event,
timestamp,
currentVersion);
} else {
startTimestamp = computationState.getStartTimestamp();
counter = eventSharedBuffer.put(
currentState.getName(),
event,
timestamp,
previousState.getName(),
previousEvent,
computationState.getTimestamp(),
computationState.getCounter(),
currentVersion);
} addComputationState(
resultingComputationStates,
nextState,
currentState,
event,
counter,
timestamp,
nextVersion,
startTimestamp); //check if newly created state is optional (have a PROCEED path to Final state)
final State<T> finalState = findFinalStateAfterProceed(nextState, event, computationState);
if (finalState != null) {
addComputationState(
resultingComputationStates,
finalState,
currentState,
event,
counter,
timestamp,
nextVersion,
startTimestamp);
}
break;
}
} return resultingComputationStates;
}
 
private OutgoingEdges<T> createDecisionGraph(ComputationState<T> computationState, T event) {
final OutgoingEdges<T> outgoingEdges = new OutgoingEdges<>(computationState.getState()); final Stack<State<T>> states = new Stack<>();
states.push(computationState.getState()); //First create all outgoing edges, so to be able to reason about the Dewey version
while (!states.isEmpty()) {
State<T> currentState = states.pop();
Collection<StateTransition<T>> stateTransitions = currentState.getStateTransitions(); //取出state所有的stateTransitions // check all state transitions for each state
for (StateTransition<T> stateTransition : stateTransitions) {
try {
if (checkFilterCondition(computationState, stateTransition.getCondition(), event)) {
// filter condition is true
switch (stateTransition.getAction()) {
case PROCEED: //如果是proceed,直接跳到下个state
// simply advance the computation state, but apply the current event to it
// PROCEED is equivalent to an epsilon transition
states.push(stateTransition.getTargetState());
break;
case IGNORE:
case TAKE: //default,把stateTransition加入边
outgoingEdges.add(stateTransition);
break;
}
}
} catch (Exception e) {
throw new RuntimeException("Failure happened in filter function.", e);
}
}
}
return outgoingEdges;
}
 
 
 
 
 
 
 
 

Flink – CEP NFA的更多相关文章

  1. Apache Flink CEP 实战

    本文根据Apache Flink 实战&进阶篇系列直播课程整理而成,由哈啰出行大数据实时平台资深开发刘博分享.通过一些简单的实际例子,从概念原理,到如何使用,再到功能的扩展,希望能够给打算使用 ...

  2. Flink cep的初步使用

    一.CEP是什么 在应用系统中,总会发生这样或那样的事件,有些事件是用户触发的,有些事件是系统触发的,有些可能是第三方触发的,但它们都可以被看做系统中可观察的状态改变,例如用户登陆应用失败.用户下了一 ...

  3. Flink/CEP/规则引擎/风控

    基于 Apache Flink 和规则引擎的实时风控解决方案 ​ 对一个互联网产品来说,典型的风控场景包括:注册风控.登陆风控.交易风控.活动风控等,而风控的最佳效果是防患于未然,所以事前事中和事后三 ...

  4. 大数据计算引擎之Flink Flink CEP复杂事件编程

    原文地址: 大数据计算引擎之Flink Flink CEP复杂事件编程 复杂事件编程(CEP)是一种基于流处理的技术,将系统数据看作不同类型的事件,通过分析事件之间的关系,建立不同的时事件系序列库,并 ...

  5. FlinkCEP - Complex event processing for Flink

    https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/libs/cep.html 首先目的是匹配pattern sequenc ...

  6. 8.Flink实时项目之CEP计算访客跳出

    1.访客跳出明细介绍 首先要识别哪些是跳出行为,要把这些跳出的访客最后一个访问的页面识别出来.那么就要抓住几个特征: 该页面是用户近期访问的第一个页面,这个可以通过该页面是否有上一个页面(last_p ...

  7. 流计算技术实战 - CEP

    CEP,Complex event processing Wiki定义 "Complex event processing, or CEP, is event processing that ...

  8. 如何利用Flink实现超大规模用户行为分析

    如何利用Flink实现超大规模用户行为分析   各位晚上好,首先感谢大家参与我的这次主题分享,同时也感谢 InfoQ AI 前线组织这次瀚思科技主题月! 瀚思科技成立于 2014 年,按行业划分我们是 ...

  9. Flink 灵魂两百问,这谁顶得住?

    Flink 学习 https://github.com/zhisheng17/flink-learning 麻烦路过的各位亲给这个项目点个 star,太不易了,写了这么多,算是对我坚持下来的一种鼓励吧 ...

随机推荐

  1. flink 获取上传的Jar源码

    package org.apache.flink.runtime.webmonitor.handlers; /** * Handles .jar file uploads. */public clas ...

  2. Android查询不到电话号码解决方法

    貌似联系人有三个数据库,且不同步,另外也有可能是版本问题. 解决方案:https://github.com/codinguser/android_contact_picker 接下来会对其进行一些改造 ...

  3. spring batch中用到的表

    1,批量表的前缀:{prefix}来自类AbstractJdbcBatchMetadataDao中的变量DEFAULT_TABLE_PREFIX 2,{prefix}job_execution:存放j ...

  4. 【emWin】例程二十八:窗口对象——Menu

    简介: MENU 小工具可用于创建若干种菜单.每个菜单项代表一个应用程序命令或 子菜单.MENU 可水平显示和/ 或垂直显示.菜单项可使用分隔符进行分组.水 平菜单和垂直菜单均支持分隔符.选择一个菜单 ...

  5. (原)测试 Java中Synchronized锁定对象的用法

    今天再android_serial_port中看到了关键字 synchronized;因为刚好在学java和android,所以就查了一下它的用法: 于是把代码中的一小段代码拿了出来,做了一下修改,测 ...

  6. CentOS Nginx网站服务器搭建实例

    Nginx是一款开源的高性能HTTP服务器和返向代理服务器.     下载.编译.安装模块:   [root@localhost nginx-1.4.0]#wget http://nginx.org/ ...

  7. Spark学习笔记——数据读取和保存

    spark所支持的文件格式 1.文本文件 在 Spark 中读写文本文件很容易. 当我们将一个文本文件读取为 RDD 时,输入的每一行 都会成为 RDD 的 一个元素. 也可以将多个完整的文本文件一次 ...

  8. Java中创建对象的五种方式

    我们总是讨论没有对象就去new一个对象,创建对象的方式在我这里变成了根深蒂固的new方式创建,但是其实创建对象的方式还是有很多种的,不单单有new方式创建对象,还有使用反射机制创建对象,使用clone ...

  9. Collections.synchronizedMap()与ConcurrentHashMap的区别

    前面文章提到Collections.synchronizedMap()与ConcurrentHashM两者都提供了线程同步的功能.那两者的区别在哪呢?我们们先来看到代码例子.    下面代码实现一个线 ...

  10. NUC972 linux 烧录

    节介绍如何刻录uboot.kernel和文件系统到NAND Flash, 并且设定NUC970系列芯片从NAND Flash中开机.本节操作需要windows环境下进行.(初次连接电脑需要安装驱动) ...