Problem:

the important frequency information is lack of effective modelling.

?? what is frequency information in time series? and why other models don't model this kind of frequency information?

frequency learning

we propose two deep learning models: 1. residual classification flow for classification. 2. multi-frequency long short-term memory for forecasting

INTRODUCTION

1. two types of time series analysis methods:

与其这样说不如说time series只有两个维度,时间维度和频率维度。

time-domain methods: analyze correlations among time series

frequency-domain methods: transform time series into a frequency spectrum, Fourier transform/ Z-transform;

2. How to integrate wavelet transforms into the framework of deep learning models remains a great challenge.

MODEL

Multilevel Discrete Wavelet Decomposition (MDWD) [26] is a wavelet based discrete signal analysis method, which can extract multilevel time-frequency features from a time series by decomposing the series as low and high frequency sub-series level by level.

解释: 相当于将time series x分解成为i个level 的low frequency 和high frequency的子序列。而分解出来的结果则为时序数据的features;之后将feature输入到CNN和LSTM中,进行分类和预测。

该论文的唯一新意是进行了小波分解,将一个time series分解为l个high frequency and low frequency的子序列,之后将子序列feed in different neural structure.

Residual classification flow: classification - supervised learning;

a multilayer perceptron + a residual learning method.

?? 在这里residual learning起了什么作用呢。

Multi-frequency long short term memory:

sub-series + lstm

How to evaluate the performance of models:

MAPE: mean absolute percentage error;

RMSE: root mean square error.

INTERPRETATION

the outputs of the middle layers in mWDN, i.e., xl (i) and xh (i), inherit the physical meanings of wavelet decompositions

增加了可以解释性,即中间层的输出继承了小波分解的物理意义。但我十分怀疑这的意义,即使输出了中间层又怎么样,方便理解最终的classification/forecasting的结果,还是方便理解中间隐含层的特征?

SUPPLEMENTARY KNOWLEDGE

1. correlation and dependency is any statistical relationship, whether causal or not, between two random variables or bivariate data.

2. frequency-domain methods:

Fourier transform, wavelet transform

原理是把时域数据转换到频域

时间序列本身具有非线性和信噪比高的特点??待验证??,采用传统的高斯去噪、中值滤波等方法往往存在诸多缺陷。而小波理论是根据时频局部化的要求而发展起来的,具有自适应和数学显微镜性质,特别适合非平稳、非线性信号的处理。

PP: Multilevel wavelet decomposition network for interpretable time series analysis的更多相关文章

  1. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  2. PP: Time series clustering via community detection in Networks

    Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...

  3. 微软职位内部推荐-Service Engineer II for Azure Cloud Network

    微软近期Open的职位: Are you interested in helping to drive the direction of a product that defines the clou ...

  4. PP: Imaging time-series to improve classification and imputation

    From: University of Maryland encode time series as different types of images. reformulate features o ...

  5. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

  6. Deep Learning-Based Video Coding: A Review and A Case Study

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方 ...

  7. Github项目推荐-图神经网络(GNN)相关资源大列表

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...

  8. ICLR 2014 International Conference on Learning Representations深度学习论文papers

    ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...

  9. Image Processing and Analysis_8_Edge Detection:The Design and Use of Steerable Filters——1991

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. 初窥ECharts

    近来趁着空闲时间了解了一下 ECharts.也顺带记录一番. 首先要从下载ECharts库,这个从官网可以直接下载. 引入ECharts.JS <head> <meta charse ...

  2. spring boot 打包jar后访问classes文件夹的文件提示地址不存在

    报错内容:class path resource [client.p12] cannot be resolved to absolute file path because it does not r ...

  3. unity 教程Tanks中的Transform.InverseTransformPoint理解

    Tanks教程中在处理摄像机缩放的时候使用了下面的函数,取两个坦克的中心点之后,根据两个坦克之间的距离,保证两个坦克都在屏幕中,然后进行缩放. private float FindRequiredSi ...

  4. Python 中使用 Pillow 处理图片增加水印

    这个是个比较常见的需求,比如你在某个网站上发布了图片,在图片上就会出现带你昵称的水印.那么在Python中应该如何处理这一类需求呢? 其实在我的<Django实战开发>视频教程中有讲到这一 ...

  5. docker笔记(2)

    docker笔记(2) 常用命令和操作 1. 镜像操作 操作 命令 说明 检索 docker search 关键字 eg:docker search redis 我们经常去docker hub上检索镜 ...

  6. NPM 包管理工具详解,使用教程

    NPM 包管理工具 1.1 定义:什么是 NPM NPM 全称 Node Package Manager,它是 JavaScript 的包管理工具, 并且是 Node.js 平台的默认包管理工具.通过 ...

  7. junit 常用注解 + junit 断言详解

    @Test: 在junit3中,是通过对测试类和测试方法的命名来确定是否是测试,且所有的测试类必须继承junit的测试基类.在junit4中,定义一个测试方法变得简单很多,只需要在方法前加上@Test ...

  8. QingTing.Fm-WPF是调用蜻蜓FMAPI 查询API内容展示,进行播放

    QingTing.Fm 是调用蜻蜓FM   API 查询界面内容,进行在线播放. Release地址下载 环境 Visual Studio 2019,dotNet Framework 4.6.1 SD ...

  9. stream重复Key的处理

    Map<String, List<Model>> modelMap = modelList .stream() .collect(Collectors .toMap(model ...

  10. Neo4j入门-开始使用

    前言 关系,指事物之间相互作用.相互影响的状态. 数据之间的关系也是如此,数据之间关系的存储在RDS就已经开始.从数据库支持的外键,到手动建立的关系表,人们采取了许多方法,只为了解决查询复杂.缓慢等问 ...