Problem:

the important frequency information is lack of effective modelling.

?? what is frequency information in time series? and why other models don't model this kind of frequency information?

frequency learning

we propose two deep learning models: 1. residual classification flow for classification. 2. multi-frequency long short-term memory for forecasting

INTRODUCTION

1. two types of time series analysis methods:

与其这样说不如说time series只有两个维度,时间维度和频率维度。

time-domain methods: analyze correlations among time series

frequency-domain methods: transform time series into a frequency spectrum, Fourier transform/ Z-transform;

2. How to integrate wavelet transforms into the framework of deep learning models remains a great challenge.

MODEL

Multilevel Discrete Wavelet Decomposition (MDWD) [26] is a wavelet based discrete signal analysis method, which can extract multilevel time-frequency features from a time series by decomposing the series as low and high frequency sub-series level by level.

解释: 相当于将time series x分解成为i个level 的low frequency 和high frequency的子序列。而分解出来的结果则为时序数据的features;之后将feature输入到CNN和LSTM中,进行分类和预测。

该论文的唯一新意是进行了小波分解,将一个time series分解为l个high frequency and low frequency的子序列,之后将子序列feed in different neural structure.

Residual classification flow: classification - supervised learning;

a multilayer perceptron + a residual learning method.

?? 在这里residual learning起了什么作用呢。

Multi-frequency long short term memory:

sub-series + lstm

How to evaluate the performance of models:

MAPE: mean absolute percentage error;

RMSE: root mean square error.

INTERPRETATION

the outputs of the middle layers in mWDN, i.e., xl (i) and xh (i), inherit the physical meanings of wavelet decompositions

增加了可以解释性,即中间层的输出继承了小波分解的物理意义。但我十分怀疑这的意义,即使输出了中间层又怎么样,方便理解最终的classification/forecasting的结果,还是方便理解中间隐含层的特征?

SUPPLEMENTARY KNOWLEDGE

1. correlation and dependency is any statistical relationship, whether causal or not, between two random variables or bivariate data.

2. frequency-domain methods:

Fourier transform, wavelet transform

原理是把时域数据转换到频域

时间序列本身具有非线性和信噪比高的特点??待验证??,采用传统的高斯去噪、中值滤波等方法往往存在诸多缺陷。而小波理论是根据时频局部化的要求而发展起来的,具有自适应和数学显微镜性质,特别适合非平稳、非线性信号的处理。

PP: Multilevel wavelet decomposition network for interpretable time series analysis的更多相关文章

  1. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  2. PP: Time series clustering via community detection in Networks

    Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...

  3. 微软职位内部推荐-Service Engineer II for Azure Cloud Network

    微软近期Open的职位: Are you interested in helping to drive the direction of a product that defines the clou ...

  4. PP: Imaging time-series to improve classification and imputation

    From: University of Maryland encode time series as different types of images. reformulate features o ...

  5. ### Paper about Event Detection

    Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1 ...

  6. Deep Learning-Based Video Coding: A Review and A Case Study

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1.Abstract: 本文主要介绍的是2015年以来关于深度图像/视频编码的代表性工作,主要可以分为两类:深度编码方案以及基于传统编码方 ...

  7. Github项目推荐-图神经网络(GNN)相关资源大列表

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...

  8. ICLR 2014 International Conference on Learning Representations深度学习论文papers

    ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...

  9. Image Processing and Analysis_8_Edge Detection:The Design and Use of Steerable Filters——1991

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. 2019年终总结之SAP项目实践篇

    2019年终总结之SAP项目实践篇 到了临近年底,又是年终总结的时候了. 早在去年12月下旬,笔者就有展望2019年度SAP项目实践计划.当时笔者对于在2019年度SAP项目工作有三大期望或者说三大目 ...

  2. 深度(deepin)系统不能ssh root用户登录

    vi /etc/ssh/sshd_config找到这一部分信息刚进去信息应该是这样 # Authentication: #LoginGraceTime 2m #PermitRootLogin proh ...

  3. Django csrf校验

    引入: 通常,钓鱼网站本质是本质搭建一个跟正常网站一模一样的页面,用户在该页面上完成转账功能 转账的请求确实是朝着正常网站的服务端提交,唯一不同的在于收款账户人不同. 如果想模拟一个钓鱼网站,就可是给 ...

  4. 安装PHP到CentOS(YUM)

    运行环境 系统版本:CentOS Linux release 7.3.1611 软件版本:PHP-7.2 硬件要求:无 安装过程 1.配置YUM源 [root@localhost ~]# rpm -i ...

  5. 【MVC+EasyUI实例】对数据网格的增删改查(上)

    前言 此案例是针对之前做的一个小例子的后台框架的修改,从以前的三层框架改为现在的MVC框架,也是做了一次MVC和EasyUI的结合,分为2篇文章来阐述. 界面如下: 点击"添加"按 ...

  6. Java WebService 简单实例-服务端和客户端

    转载自ITeye:https://www.iteye.com/topic/1135747/

  7. TChart-数据编辑(TChartListBox,TeeCommander)

    先上图 功能代码: unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Contr ...

  8. Python之filter()函数与替代实现

    介绍 filter(f,x)函数用于过滤序列并返回迭代器,结果保留x中f为True的元素,需要新的序列通过list()转换. 例子 过滤列表中的字符串,保留数字. >>> i = [ ...

  9. 什么是json? 什么是xml?JSON与XML的区别比较

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.它使得人们很容易的进行阅读和编写.同时也方便了机器进行解析和生成.它是基于 JavaScript Prog ...

  10. 剑指offer-面试题14-剪绳子-贪婪算法

    /* 题目: 给定一个长度为n的绳子,把绳子剪为m段,(n>1,m>1) 求各段绳子乘积的最大值. */ /* 思路: 贪婪算法. 当绳子的长度大于5时,尽可能多的剪长度为3的绳子:当剩下 ...