https://odzkskevi.qnssl.com/5e1fdf8cae5d11a8f572bae96d6095c0?v=1507521965

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story: The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi , yi , zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn’t be stacked. Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks. Input The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values xi , yi and zi . Input is terminated by a value of zero (0) for n. Output For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format ‘Case case: maximum height = height’ Sample Input 1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0 Sample Output Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342

【题解】

考虑a,b,c三个长度哪一个做高,分别用1/2/3表示

dp[i][1/2/3]表示i在最上面,a/b/c作高的最大高度

其实是一个DAG

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cmath>
#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))
inline void swap(int &a, int &b)
{
int tmp = a;a = b;b = tmp;
}
inline void read(int &x)
{
x = ;char ch = getchar(), c = ch;
while(ch < '' || ch > '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '', ch = getchar();
if(c == '-')x = -x;
} const int MAXN = + ; struct Node
{
int a,b,c;
int geta(int num)
{
if(num == )return a;
else if(num == )return b;
else return c;
}
int getb(int num)
{
if(num == )return b;
else if(num == )return c;
else return a;
}
int getc(int num)
{
if(num == )return c;
else if(num == )return a;
else return b;
}
}node[MAXN]; int tt, dp[MAXN][MAXN], n; int cmp(Node a, int numa, Node b, int numb)
{
return (a.geta(numa) < b.geta(numb) && a.getb(numa) < b.getb(numb)) || (a.geta(numa) < b.getb(numb) && a.getb(numa) < b.geta(numb));
} int f(int a, int b)
{
if(dp[a][b] != -)return dp[a][b];
dp[a][b] = node[a].getc(b);
for(register int i = ;i <= n;++ i)
{
for(register int j = ;j <= ;++ j)
{
if(cmp(node[i],j,node[a],b))
dp[a][b] = max(dp[a][b], f(i, j) + node[a].getc(b));
}
}
return dp[a][b];
} int main()
{
while(scanf("%d", &n) != EOF && n)
{
++ tt;
memset(dp, -, sizeof(dp));
for(register int i = ;i <= n;++ i)
read(node[i].a), read(node[i].b), read(node[i].c);
int ans = -;
for(register int i = ;i <= n;++ i)
for(register int j = ;j <= ;++ j)
ans = max(ans, f(i, j));
printf("Case %d: maximum height = %d\n", tt, ans);
}
return ;
}

Uva437

Uva437 The Tower of Babylon的更多相关文章

  1. ACM - 动态规划 - UVA437 The Tower of Babylon

    UVA437 The Tower of Babylon 题解 初始时给了 \(n\) 种长方体方块,每种有无限个,对于每一个方块,我们可以选择一面作为底.然后用这些方块尽可能高地堆叠成一个塔,要求只有 ...

  2. [动态规划]UVA437 - The Tower of Babylon

     The Tower of Babylon  Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many d ...

  3. UVa437 The Tower of Babylon(巴比伦塔)

    题目 有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体. 原题链接 分析 顶面的大小会影响后续的决策,但不能直接用d[a][b]来表示,因为可 ...

  4. 【DP】【Uva437】UVA437 The Tower of Babylon

    传送门 Description Input Output Sample Input Sample Output Case : maximum height = Case : maximum heigh ...

  5. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  6. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  7. UVA 437 十九 The Tower of Babylon

    The Tower of Babylon Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Subm ...

  8. POJ2241——The Tower of Babylon

    The Tower of Babylon Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2207   Accepted: 1 ...

  9. UVA437-The Tower of Babylon(动态规划基础)

    Problem UVA437-The Tower of Babylon Accept: 3648  Submit: 12532Time Limit: 3000 mSec Problem Descrip ...

随机推荐

  1. 19-11-13-Night-∠

    连夜补博客 ZJ: 看见T1就自闭了.(高考数学)(但是好像不是) 三个暴力就结束了. 35 Miemeng 20 00:00:41 10 00:00:41 10 00:00:41 40 00:00: ...

  2. php输出json,需要嵌套数组和对象问题

    https://segmentfault.com/q/1010000009985295 $tmp = []; $tmp['id'] = 'aaa'; $tmp['name'] = 'bbb'; $tm ...

  3. 由VMnet引起的browser-sync故障解决方案

    (2019年2月19日注:这篇文章原先发在自己github那边的博客,时间是2016年7月11日) 今天晚上,前端组的小伙伴问我说能不能帮忙看看他的电脑为什么在安装了browser-sync插件以后, ...

  4. jmeter参数化之用户参数

    1.     用badboby进行录制,录制完成后保存,用JMeter格式进行保存,如:登陆.jmx 2.     在jmeter中打开保存的文件登陆.jmx. 3.在step1上右击-添加-前置处理 ...

  5. CentOS 6.5 源码编译搭建LAMP(两台独立主机实现)

    搭建前准备: 1.两台独立主机 httpd:192.168.1.105 php-fpm:192.168.1.105 mariadb:192.168.1.103 2.相关软件的源码包 httpd:htt ...

  6. webapp中<meta>与css代码部署

    1.页面头部标签申明 <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml" id="te ...

  7. 廖雪峰Java10加密与安全-6数字证书-1数字证书

    数字证书: 非对称加密算法:对数据进行加密/解密 签名算法:确保数据完整性和抗否认性 摘要算法:确保证书本身没有被篡改

  8. linux下mysql的配置问题

    设置MySQL 复制以下配置信息到新建的my.ini(windows下的文件)文件中. [mysqld] # 设置3306端口 port= # 设置mysql的安装目录 basedir=D:\Prog ...

  9. 在sqlserver 的函数或存储过程中抛出异常(raiserror )

      raiserror的作用: raiserror 是用于抛出一个错误 其语法如下: RAISERROR ( { msg_id | msg_str | @local_variable } { ,sev ...

  10. NSIS语法解析

    注释.!define.变量.!include.常量 ; Script generated by the HM NIS Edit Script Wizard. ; HM NIS Edit Wizard ...