本次demo主题是使用keras对IMDB影评进行文本分类:

import tensorflow as tf
from tensorflow import keras
import numpy as np print(tf.__version__) imdb = keras.datasets.imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels)))
print(train_data[0])
len(train_data[0]), len(train_data[1]) # A dictionary mapping words to an integer index
word_index = imdb.get_word_index() # The first indices are reserved
word_index = {k:(v+3) for k,v in word_index.items()}
word_index["<PAD>"] = 0
word_index["<START>"] = 1
word_index["<UNK>"] = 2 # unknown
word_index["<UNUSED>"] = 3 reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) #把数字序列转化为相应的字符串
def decode_review(text):
return ' '.join([reverse_word_index.get(i, '?') for i in text]) #显示其中一个评价
decode_review(train_data[0]) #pad填充使其长度一样
train_data = keras.preprocessing.sequence.pad_sequences(train_data,
value=word_index["<PAD>"],
padding='post',
maxlen=256) test_data = keras.preprocessing.sequence.pad_sequences(test_data,
value=word_index["<PAD>"],
padding='post',
maxlen=256) len(train_data[0]), len(train_data[1])
print(train_data[0]) # input shape is the vocabulary count used for the movie reviews (10,000 words)
vocab_size = 10000
#建立模型
model = keras.Sequential()
model.add(keras.layers.Embedding(vocab_size, 16))
model.add(keras.layers.GlobalAveragePooling1D()) #对序列维度求平均,为每个示例返回固定长度的输出向量
model.add(keras.layers.Dense(16, activation=tf.nn.relu))
model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid)) #显示模型的概况
model.summary() model.compile(optimizer=tf.train.AdamOptimizer(),
loss='binary_crossentropy',
metrics=['accuracy']) #创建验证集
x_val = train_data[:10000]
partial_x_train = train_data[10000:] y_val = train_labels[:10000]
partial_y_train = train_labels[10000:] #训练
history = model.fit(partial_x_train,
partial_y_train,
epochs=40,
batch_size=512,
validation_data=(x_val, y_val),
verbose=1) results = model.evaluate(test_data, test_labels)
print(results) history_dict = history.history
history_dict.keys()
##out:dict_keys(['val_loss', 'val_acc', 'loss', 'acc']) ##显示loss下降的图
import matplotlib.pyplot as plt acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss'] epochs = range(1, len(acc) + 1) # "bo" is for "blue dot"
plt.plot(epochs, loss, 'bo', label='Training loss')
# b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend() plt.show() ##显示accuracy上升的图
plt.clf() # clear figure
acc_values = history_dict['acc']
val_acc_values = history_dict['val_acc'] plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend() plt.show()

layers的概况

_________________________________________________________________

Layer (type)           Output Shape           Param

# =================================================================

embedding (Embedding)       (None, None, 16)         160000

_________________________________________________________________

global_average_pooling1d (Gl     (None, 16)             0

_________________________________________________________________

dense (Dense)            (None, 16)             272

_________________________________________________________________

dense_1 (Dense)           (None, 1)              17

=================================================================

Total params: 160,289

Trainable params: 160,289

Non-trainable params: 0

_________________________________________________________________

基于keras中IMDB的文本分类 demo的更多相关文章

  1. 基于Text-CNN模型的中文文本分类实战 流川枫 发表于AI星球订阅

    Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...

  2. 基于Text-CNN模型的中文文本分类实战

    Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于T ...

  3. 万字总结Keras深度学习中文文本分类

    摘要:文章将详细讲解Keras实现经典的深度学习文本分类算法,包括LSTM.BiLSTM.BiLSTM+Attention和CNN.TextCNN. 本文分享自华为云社区<Keras深度学习中文 ...

  4. Chinese-Text-Classification,用卷积神经网络基于 Tensorflow 实现的中文文本分类。

    用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:ht ...

  5. 基于Keras的imdb数据集电影评论情感二分类

    IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行.)中找到下载,下载后放到~/.keras/datasets/目录下,即可正 ...

  6. 用keras实现基本的文本分类任务

    数据集介绍 包含来自互联网电影数据库的50000条影评文本,对半拆分为训练集和测试集.训练集和测试集之间达成了平衡,意味着它们包含相同数量的正面和负面影评,每个样本都是一个整数数组,表示影评中的字词. ...

  7. 基于Naive Bayes算法的文本分类

    理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果 ...

  8. 学界 | Yann LeCun新作,中日韩文本分类到底要用哪种编码?

    https://www.wxwenku.com/d/102093756 AI科技评论按:前几天,Yann LeCun与其学生 张翔在arXiv上发表了一篇新作「Which Encoding is th ...

  9. 基于Huggingface使用BERT进行文本分类的fine-tuning

    随着BERT大火之后,很多BERT的变种,这里借用Huggingface工具来简单实现一个文本分类,从而进一步通过Huggingface来认识BERT的工程上的实现方法. 1.load data tr ...

随机推荐

  1. Freemaker 开发学习笔记

    Freemaker 是一个强大的模板引擎,相比 velocity 而言,其强大的过程调用.递归和闭包回调功能让 freemaker 可以完成几乎所有我们所想的功能.从个人看法而言,freemaker ...

  2. PAT甲级——A1092 To Buy or Not to Buy【20】

    Eva would like to make a string of beads with her favorite colors so she went to a small shop to buy ...

  3. Django项目订单接入支付宝

    1.首先下载所需要的包 pip install python-alipay-sdk 2.在视图函数里面引入所需要的类 from alipay import AliPay 3.利用这个类创建一个实例对象 ...

  4. C# GDI+编程(二)

    常用的绘图函数 DrawArc绘制一个弧形 示例:graphics.DrawArc(pen,,,,,,) 倒数第二个参数,表示起始度数,最后一个参数是弧形的跨越度数.比如起始度数是90,跨越度数是12 ...

  5. Selenium浏览器自动化测试使用(1)

    Selenium - 介绍 Selenium是一个开源的和便携式的自动化软件测试工具,用于测试Web应用程序有能力在不同的浏览器和操作系统运行.Selenium真的不是一个单一的工具,而是一套工具,帮 ...

  6. Leetcode95. Unique Binary Search Trees II不同的二叉搜索树2

    给定一个整数 n,生成所有由 1 ... n 为节点所组成的二叉搜索树. 示例: 输入: 3 输出: [   [1,null,3,2],   [3,2,null,1],   [3,1,null,nul ...

  7. git的三个区域比较

    工作区: 暂存区: 提交区: 工作区与暂存区比较:git diff 工作区与提交区比较:git diff 提交hash码或者HEAD 暂存区与提交区比较:git diff --cached 两个不同提 ...

  8. 最小费用最大流——EK+SPFA

    终于把最小费用最大流学会了啊-- 各种奇奇怪怪的解释我已经看多了,但在某些大佬的指点下,我终于会了. 原来是个好水的东西. 最小费用最大流是什么? 不可能不知道网络流吧?如果不知道,自行百度去-- 费 ...

  9. 关于mysql8授权的问题,mysql萌新小白采坑记录

    记录本人第一次使用mysql时踩的坑,因为我从官网下载最新的版本8.0.15msi版本的,直接下一步下一步安装完成之后,本地访问正常,然后服务器安装访问也正常.然后本地连接服务器上的mysql时报错. ...

  10. CGLayer和CALayer区别

    CGLayer是一种很好的缓存常绘内容的方法.注意,不要与CALayer混淆.CALayer是Core Animation中更加强大.复杂的图层对象,而CGLayer是Core Graphics中优化 ...