Hash(散列函数)
Hash,一般翻译做散列、杂凑,或音译为哈希,是把任意长度的输入(又叫做预映射pre-image)通过散列算法变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数
若结构中存在和关键字K相等的记录,则必定在f(K)的
存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为
散列函数(Hash function),按这个事先建立的表为
散列表。
对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称碰撞。具有相同函数值的关键字对该散列函数来说称做
同义词。综上所述,根据散列函数H(key)和处理冲突的方法将一组关键字映射到一个有限的连续的地址集(区间)上,并以关键字在地址集中的“象” 作为记录在表中的存储位置,这种表便称为
散列表,这一映象过程称为散列造表或
散列,所得的存储位置称散列地址。
若对于
关键字集合中的任一个关键字,经
散列函数映象到地址集合中任何一个地址的概率是相等的,则称此类散列函数为均匀散列函数(Uniform Hash function),这就是使关键字经过散列函数得到一个“随机的地址”,从而减少冲突。
性质
所有
散列函数都有如下一个基本特性:如果两个散列值是不相同的(根据同一函数),那么这两个散列值的原始输入也是不相同的。这个特性是散列函数具有确定性的结果。但另一方面,散列函数的输入和输出不是一一对应的,如果两个散列值相同,两个输入值很可能是相同的,但不绝对肯定二者一定相等(可能出现哈希碰撞)。输入一些数据计算出散列值,然后部分改变输入值,一个具有强混淆特性的散列函数会产生一个完全不同的散列值。 [1]
典型的散列函数都有无限定义域,比如任意长度的字节字符串,和有限的值域,比如固定长度的比特串。在某些情况下,散列函数可以设计成具有相同大小的定义域和值域间的一一对应。一一对应的散列函数也称为排列。可逆性可以通过使用一系列的对于输入值的可逆“混合”运算而得到。
常用HASH函数
散列函数能使对一个数据序列的访问过程更加迅速有效,通过散列函数,
数据元素将被更快地定位。常用Hash函数有:
1.
直接寻址法。取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a·key + b,其中a和b为常数(这种散列函数叫做自身函数)
2. 数字分析法。分析一组数据,比如一组员工的出生年月日,这时我们发现出生年月日的前几位数字大体相同,这样的话,出现冲突的几率就会很大,但是我们发现年月日的后几位表示月份和具体日期的数字差别很大,如果用后面的数字来构成散列地址,则冲突的几率会明显降低。因此数字分析法就是找出数字的规律,尽可能利用这些数据来构造冲突几率较低的散列地址。
3. 平方取中法。取关键字平方后的中间几位作为散列地址。
4. 折叠法。将关键字分割成位数相同的几部分,最后一部分位数可以不同,然后取这几部分的叠加和(去除进位)作为散列地址。
5. 随机数法。选择一随机函数,取关键字作为随机函数的种子生成随机值作为散列地址,通常用于关键字长度不同的场合。
6. 除留余数法。取关键字被某个不大于
散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p,p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生碰撞。
处理冲突方法
1.
开放寻址法;Hi=(H(key) + di) MOD m,i=1,2,…,k(k<=m-1),其中H(key)为
散列函数,m为
散列表长,di为增量序列,可有下列三种取法:
1). di=1,2,3,…,m-1,称线性探测再散列;
2). di=1^2,-1^2,2^2,-2^2,3^2,…,±k^2,(k<=m/2)称二次探测再散列;
2. 再
散列法:Hi=RHi(key),i=1,2,…,k RHi均是不同的散列函数,即在同义词产生地址冲突时计算另一个散列函数地址,直到冲突不再发生,这种方法不易产生“聚集”,但增加了计算时间。
3. 链地址法(拉链法)
4. 建立一个公共溢出区
查找性能分析
散列表的查找过程基本上和造表过程相同。一些关键码可通过
散列函数转换的地址直接找到,另一些关键码在散列函数得到的地址上产生了冲突,需要按处理冲突的方法进行查找。在介绍的三种处理冲突的方法中,产生冲突后的查找仍然是给定值与关键码进行比较的过程。所以,对散列表查找效率的量度,依然用
平均查找长度来衡量。
查找过程中,关键码的比较次数,取决于产生冲突的多少,产生的冲突少,查找效率就高,产生的冲突多,查找效率就低。因此,影响产生冲突多少的因素,也就是影响查找效率的因素。影响产生冲突多少有以下三个因素:
1.散列函数是否均匀;
2. 处理冲突的方法;
散列表的装填因子定义为:α= 填入表中的元素个数/散列表的长度
α是散列表装满程度的标志因子。由于表长是定值,α与“填入表中的元素个数”成正比,所以,α越大,填入表中的元素较多,产生冲突的可能性就越大;α越小,填入表中的元素较少,产生冲突的可能性就越小。
实际上,散列表的
平均查找长度是装填因子α的函数,只是不同处理冲突的方法有不同的函数。
常用hash算法的介绍:
(1)MD4
MD5(RFC 1321)是 Rivest 于1991年对MD4的改进版本。它对输入仍以512位分组,其输出是4个32位字的级联,与 MD4 相同。MD5比MD4来得复杂,并且速度较之要慢一点,但更安全,在抗分析和抗差分方面表现更好。
SHA1是由NIST NSA设计为同DSA一起使用的,它对长度小于2^64的输入,产生长度为160bit的散列值,因此抗穷举(brute-force)性更好。SHA-1 设计时基于和MD4相同原理,并且模仿了该算法。 [2]
散列函数应用
由于
散列函数的应用的多样性,它们经常是专为某一应用而设计的。例如,
加密散列函数假设存在一个要找到具有相同散列值的原始输入的敌人。一个设计优秀的加密散列函数是一个“单向”操作:对于给定的散列值,没有实用的方法可以计算出一个原始输入,也就是说很难伪造。为加密散列为目的设计的函数,如MD5,被广泛的用作检验散列函数。这样软件下载的时候,就会对照验证代码之后才下载正确的文件部分。此代码有可能因为环境因素的变化,如机器配置或者IP地址的改变而有变动。以保证源文件的安全性。
错误监测和修复函数主要用于辨别数据被随机的过程所扰乱的事例。当散列函数被用于
校验和的时候,可以用相对较短的散列值来验证任意长度的数据是否被更改过。
错误校正
使用一个
散列函数可以很直观的检测出数据在传输时发生的错误。在数据的发送方,对将要发送的数据应用散列函数,并将计算的结果同原始数据一同发送。在数据的接收方,同样的散列函数被再一次应用到接收到的数据上,如果两次散列函数计算出来的结果不一致,那么就说明数据在传输的过程中某些地方有错误了。这就叫做
冗余校验。
对于错误校正,假设相似扰动的分布接近最小(a distribution of likely perturbations is assumed at least approximately)。对于一个信息串的微扰可以被分为两类,大的(不可能的)错误和小的(可能的)错误。我们对于第二类错误重新定义如下,假如给定 H(x) 和 x+s,那么只要s足够小,我们就能有效的计算出x。那样的
散列函数被称作错误校正编码。这些错误校正编码有两个重要的分类:循环冗余校验和
里德所罗门码。
语音识别
对于像从一个已知列表中匹配一个MP3文件这样的应用,一种可能的方案是使用传统的散列函数——例如MD5,但是这种方案会对时间平移、CD读取错误、不同的音频压缩算法或者音量调整的实现机制等情况非常敏感。使用一些类似于MD5的方法有利于迅速找到那些严格相同(从音频文件的二进制数据来看)的音频文件,但是要找到全部相同(从音频文件的内容来看)的音频文件就需要使用其他更高级的算法了。
那些并不紧随IT工业潮流的人往往能反其道而行之,对于那些微小差异足够
鲁棒的
散列函数确实存在。现存的绝大多数散列算法都是不够鲁棒的,但是有少数散列算法能够达到辨别从嘈杂房间里的扬声器里播放出来的音乐的鲁棒性。有一个实际的例子是Shazam[1]服务。用户可以用电话机拨打一个特定的号码,并将电话机的话筒靠近用于播放音乐的扬声器。该项服务会分析正在播放的音乐,并将它于存储在数据库中的已知的散列值进行比较。用户就能够收到被识别的音乐的曲名(需要收取一定的费用)
信息安全
Hash算法在信息安全方面的应用主要体以下的3个方面:
我们比较熟悉的校验算法有
奇偶校验和CRC校验,这2种校验并没有抗
数据篡改的能力,它们一定程度上能检测并纠正数据传输中的信道误码,但却不能防止对数据的恶意破坏。
MD5 Hash算法的"数字指纹"特性,使它成为应用最广泛的一种文件完整性
校验和(Checksum)算法,不少Unix系统有提供计算md5 checksum的命令。
Hash 算法也是现代密码体系中的一个重要组成部分。由于
非对称算法的运算速度较慢,所以在数字签名协议中,
单向散列函数扮演了一个重要的角色。对 Hash 值,又称"
数字摘要"进行数字签名,在统计上可以认为与对文件本身进行数字签名是等效的。而且这样的协议还有其他的优点。
(3) 鉴权协议
如下的鉴权协议又被称作挑战--认证模式:在传输信道是可被侦听,但不可被篡改的情况下,这是一种简单而安全的方法。以上就是一些关于hash以及其相关的一些基本预备知识。
哈希函数
(1)余数法:先估计整个哈希表中的表项目数目大小。然后用这个估计值作为除数去除每个原始值,得到商和余数。用余数作为哈希值。因为这种方法产生冲突的可能性相当大,因此任何搜索算法都应该能够判断冲突是否发生并提出取代算法。 [3]
(2)折叠法:这种方法是针对原始值为数字时使用,将原始值分为若干部分,然后将各部分叠加,得到的最后四个数字(或者取其他位数的数字都可以)来作为哈希值。
(3)基数转换法:当原始值是数字时,可以将原始值的数制基数转为一个不同的数字。例如,可以将十进制的原始值转为十六进制的哈希值。为了使哈希值的长度相同,可以省略高位数字。
(4)数据重排法:这种方法只是简单的将原始值中的数据打乱排序。比如可以将第三位到第六位的数字逆序排列,然后利用重排后的数字作为哈希值。
哈希函数并不通用,比如在数据库中用能够获得很好效果的哈希函数,用在密码学或错误校验方面就未必可行。在密码学领域有几个著名的哈希函数。这些函数包括MD2、MD4以及MD5,利用散列法将数字签名转换成的哈希值称为信息摘要(message-digest),另外还有
安全散列算法(SHA),这是一种标准算法,能够生成更大的(60bit)的信息摘要,有点儿类似于MD4算法。
文件的hash值
大家都知道emule是基于P2P (Peer-to-peer的缩写,指的是对等体网络下客户到客户文件传输的软件), 它采用了"多源文件传输协议”(
MFTP,the Multisource FileTransfer Protocol)。在协议中,定义了一系列传输、压缩和打包还有积分的标准,emule 对于每个文件都有md5-hash的算法设置,这使得该文件,并且在整个网络上都可以追踪得到。
MD5-Hash-文件的数字文摘通过Hash函数计算得到。不管文件长度如何,它的Hash函数计算结果是一个固定长度的数字。与
加密算法不同,这一个Hash算法是一个不可逆的
单向函数。采用安全性高的Hash算法,如MD5、SHA时,两个不同的文件几乎不可能得到相同的Hash结果。因此,一旦文件被修改,就可检测出来。
当我们的文件放到emule里面进行共享发布的时候,
emule会根据
hash算法自动生成这个文件的hash值,他就是这个文件的身份标志,它包含了这个文件的基本信息,然后把它提交到所连接的服务器。当有他人想对这个文件提出下载请求的时候, 这个hash值可以让他人知道他正在下载的文件是不是就是他所想要的。尤其是在文件的其他属性被更改之后(如名称等)这个值就更显得重要。而且服务器还提供了,这个文件当前所在的用户的地址,端口等信息,这样emule就知道到哪里去下载了。
一般来讲我们要搜索一个文件,emule在得到了这个信息后,会向被添加的服务器发出请求,要求得到有相同hash值的文件。而服务器则返回持有这个文件的用户信息。这样我们的客户端就可以直接的和拥有那个文件的用户沟通,看看是不是可以从他那里下载所需的文件。
对于emule中文件的hash值是固定的,也是的,它就相当于这个文件的信息摘要,无论这个文件在谁的机器上,他的hash值都是不变的,无论过了多长时间,这个值始终如一,当我们在进行文件的下载上传过程中,emule都是通过这个值来确定文件。
hash文件
我们经常在emule日志里面看到,emule正在hash文件,这里就是利用了hash算法的
文件校验性这个功能了,文章前面已经说了一些这些功能,其实这部分是一个非常复杂的过程,在ftp,bt等软件里面都是用的这个基本原理,emule里面是采用文件分块传输,这样传输的每一块都要进行对比校验,如果错误则要进行重新下载,这期间这些相关信息写入met文件,直到整个任务完成,这个时候part文件进行重新命名,然后使用move命令,把它传送到incoming文件里面,然后met文件自动删除,所以我们有的时候会遇到hash文件失败,就是指的是met里面的信息出了错误不能够和part文件匹配,另外有的时候开机也要疯狂hash,有两种情况一种是你在第一次使用,这个时候要hash提取所有文件信息,还有一种情况就是上一次你
非法关机,那么这个时候就是要进行排错校验了。
关于hash的算法研究,一直是信息科学里面的一个前沿,尤其在
网络技术普及的,他的重要性越来越突出,其实我们每天在网上进行的信息交流安全验证,我们在使用的操作系统
密钥原理,里面都有它的身影,特别对于那些研究信息安全有兴趣的朋友,这更是一个打开信息世界的钥匙,他在hack世界里面也是一个研究的焦点。
userhash
道理同上,当我们在第一次使用emule的时候,emule会自动生成一个值,这个值也是的,它是我们在emule世界里面的标志,只要你不卸载,不删除config,你的userhash值也就永远不变,积分制度就是通过这个值在起作用,emule里面的积分保存,身份识别,都是使用这个值,而和你的id和你的用户名无关,你随便怎么改这些东西,你的userhash值都是不变的,这也充分保证了公平性。其实他也是一个信息摘要,只不过保存的不是文件信息,而是我们每个人的信息。
散列表
散列表是
散列函数的一个主要应用,使用散列表能够快速的按照关键字查找数据记录。(注意:关键字不是像在加密中所使用的那样是秘密的,但它们都是用来“解锁”或者访问数据的。)例如,在英语字典中的关键字是英文单词,和它们相关的记录包含这些单词的定义。在这种情况下,散列函数必须把按照字母顺序排列的字符串映射到为散列表的内部
数组所创建的索引上。
散列表散列函数的几乎不可能/不切实际的理想是把每个关键字映射到的索引上(参考散列),因为这样能够保证直接
访问表中的每一个数据。
一个好的散列函数(包括大多数
加密散列函数)具有均匀的真正随机输出,因而平均只需要一两次探测(依赖于装填因子)就能找到目标。同样重要的是,随机
散列函数几乎不可能出现非常高的冲突率。但是,少量的可以估计的冲突在实际状况下是不可避免的(参考生日悖论)。
在很多情况下,heuristic散列函数所产生的冲突比随机散列函数少的多。Heuristic函数利用了相似关键字的相似性。例如,可以设计一个heuristic函数使得像FILE0000.CHK,FILE0001.CHK,FILE0002.CHK,等等这样的文件名映射到表的连续指针上,也就是说这样的序列不会发生冲突。相比之下,对于一组好的关键字性能出色的随机散列函数,对于一组坏的关键字经常性能很差,这种坏的关键字会自然产生而不仅仅在攻击中才出现。性能不佳的
散列函数表意味着查找操作会退化为费时的线性搜索。扩展
MD5、SHA1的破解
2004年8月17日,在美国
加州圣芭芭拉召开的国际密码大会上,山东大学
王小云教授在国际会议上首次宣布了她及她的研究小组的研究成果——对
MD5、HAVAL-128、MD4和
RIPEMD四个著名
密码算法的破译结果。次年二月宣布破解
SHA-1密码。命令描述
Linux命令——hash
hash命令用来显示、添加和清除
哈希表。该命令的语法格式如下所示。
语法
hash [-l] [-r] [-p <path> <name>] [-t <command>]
选项说明
选项
|
说明
|
-l
|
显示哈希表,包括路径
|
-r
|
清除哈希表
|
-p <path> <name>
|
向哈希表中增加内容
|
-t <command>
|
显示指定命令的完整路径
|
HASH命令
hash 每次传输完
数据缓冲区中的数据后就显示一个#号
- 哈希--Hash,“散列”/“哈希”
哈希 Hash,翻译“散列”,音译为“哈希”,把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值.这种转换是一种压缩映射,也就是散列值的空间通常远小于输入的空间,不同的输入可能会散 ...
- redis 哈希(hash)函数
哈希(hash)函数 hSet 命令/方法/函数 Adds a value to the hash stored at key. If this value is already in the has ...
- redist命令操作(二)--哈希Hash,列表List
1.Redis 哈希(Hash) 参考菜鸟教程:http://www.runoob.com/redis/redis-hashes.html Redis hash 是一个string类型的field和v ...
- Redis中的哈希(Hash)
Redis 哈希(Hash) Redis hash 是一个string类型的field和value的映射表,hash特别适合用于存储对象. Redis 中每个 hash 可以存储 232 - 1 键值 ...
- NSDictionary实现原理-ios哈希hash和isEqual
NSDictionary实现原理-ios哈希hash和isEqual OC中自定义类的NSCopying实现的注意事项(isEqual & hash实现) http://blog.csdn ...
- 大话Java中的哈希(hash)结构(一)
o( ̄▽ ̄)d 小伙伴们在上网或者搞程序设计的时候,总是会听到关于“哈希(hash)”的一些东西.比如哈希算法.哈希表等等的名词,那么什么是hash呢? 一.相关概念 1.hash算法:一类特殊的算法 ...
- Python操作redis系列以 哈希(Hash)命令详解(四)
# -*- coding: utf-8 -*- import redis #这个redis不能用,请根据自己的需要修改 r =redis.Redis(host=") 1. Hset 命令用于 ...
- Redis 命令,键(key),字符串(String),哈希(Hash),列表(List),集合(Set)(二)
Redis 命令 Redis 命令用于在 redis 服务上执行操作. 要在 redis 服务上执行命令需要一个 redis 客户端.Redis 客户端在我们之前下载的的 redis 的安装包中. ...
- 区块链 - 哈希(Hash)
章节 区块链 – 介绍 区块链 – 发展历史 区块链 – 比特币 区块链 – 应用发展阶段 区块链 – 非对称加密 区块链 – 哈希(Hash) 区块链 – 挖矿 区块链 – 链接区块 区块链 – 工 ...
随机推荐
- LaTex 插入图像,以及应用表格
插入图像 参考:http://www.ctex.org/documents/latex/graphics/ 1: \includegraphics[width=20mm]{head.png} 应用表格 ...
- Linux apache httpd virtual配置
必须要关闭 selinux,否则无法访问目录
- wpf中datagrid绑定数据源发生改变
1.若datagrid绑定的数据源是同一个的话,即使里面的数据不同.页面也不会刷新,则需要重置数据源,再绑定.处理如下: datagrid1.ItemsSource=ListModule; 若List ...
- js 实现图片懒加载
搬运自其他大神,因为找不到链接了就没放,找到了补上. 个人情况:页面超过一屏,下方是大量图片数据(后台传来的html数据) ,想做到一开始不加载下方图片,滚动到进入可视区再加载图片. html:(需先 ...
- MonkeyTalk使用方法
1.简单介绍 MonkeyTalk软件测试工具由两部分构成:MonkeyTalk IDE 和 MonkeyTalk Agents MonkeyTalk IDE是Eclipse平台的工具,工能是:对iO ...
- 笔记44 Hibernate快速入门(一)
一.Hibernate简介 Hibernate 是传统 Java 对象和数据库服务器之间的桥梁,用来处理基于 O/R 映射机制和模式的那些对象. Hibernate 架构是分层的,作为数据访问层,你不 ...
- K8S命令的梳理
kubectl是一个基础的K8S集群管理命令,可以实现对K8S资源的查询,创建,删除,更新,回退等各种各样的操作.由于其复杂的功能体系,命令灵活度又高,因此需要进行常见的一些命令和使用场景的梳理. 1 ...
- python学习笔记(十)——正则表达式和re模块
#正则表达式和re模块 # match(pattern, string,[flag]) #在字符串开始时进行匹配 # pattern 正则表达式 # string 要匹配的字符串 # [flag] 可 ...
- gitj基础2
回滚版本 git reset --hard HEAD^ 回滚上一个版本 git reset --hard 版本号(或者版本号前6位) 回滚到指定版本 如果修改版本了,也关 ...
- delphi xe10 中使用剪贴板(跨平台)
VCL 中如何使用剪贴板咱就不说了,FMX 做为一个新的框架,提供了跨平台的剪贴板支持.FMX 对剪贴板的支持来自两个接口: IFMXClipboardService:位于 FMX.Platform. ...