T1 [JZOJ2642] 游戏

题目描述

  Alice和Bob在玩一个游戏,游戏是在一个N*N的矩阵上进行的,每个格子上都有一个正整数。当轮到Alice/Bob时,他/她可以选择最后一列或最后一行,并将其删除,但必须保证选择的这一行或这一列所有数的和为偶数。如果他/她不能删除最后一行或最后一列,那么他/她就输了。两人都用最优策略来玩游戏,Alice先手,问Alice是否可以必胜?

分析

  这个说辞...一看就知道是博弈论

  众所周知,博弈论有两个重要结论:

  1.一个状态是必败状态当且仅当它任意后继都是必胜状态

  2.一个状态是必胜状态当且仅当它存在后继是必败状态

  于是设 $f[i][j]$ 为矩阵为 $i$ 行 $j$ 列时该回合操作方的状态($1$ 为必胜,$0$ 为必败),显然 $f[1][1]=1$

  同时需要将 $f[1][i]$ 和 $f[i][1]$ 初始化,还要记录所有横轴和纵轴的前缀和

  然后分别讨论删除最后一行和最后一列时的后继状态,若该行或该列无法被删除,则该后继视为必胜

  考场上写这题的时候已经不早了,感觉有点慌,幸好最后过了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
#define N 1005 int T, n;
int g[N][N], f[N][N], p1[N][N], p2[N][N]; int main() {
scanf("%d", &T);
while (T--) {
scanf("%d", &n);
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++) {
scanf("%d", &g[i][j]);
p1[i][j] = p1[i][j - ] + g[i][j];
p2[i][j] = p2[i - ][j] + g[i][j];
}
f[][] = ;
for (int i = ; i <= n; i++) {
int t1, t2;
if (p1[][i] % ) t1 = ;
else t1 = ;
if (p2[][i] % ) t2 = ;
else if (f[][i - ]) t2 = ;
else t2 = ;
if (t1 && t2) f[][i] = ;
else f[][i] = ;
}
for (int i = ; i <= n; i++) {
int t1, t2;
if (p2[i][] % ) t2 = ;
else t2 = ;
if (p2[i][] % ) t1 = ;
else if (f[i - ][]) t1 = ;
else t1 = ;
if (t1 && t2) f[][i] = ;
else f[i][] = ;
}
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++) {
int t1, t2;
if (p1[i][j] % ) t1 = ;
else if (f[i - ][j]) t1 = ;
else t1 = ;
if (p2[i][j] % ) t2 = ;
else if (f[i][j - ]) t2 = ;
else t2 = ;
if (t1 && t2) f[i][j] = ;
else f[i][j] = ;
}
if (f[n][n]) printf("W\n");
else printf("L\n");
} return ;
}

T2 [JZOJ2643] 六边形

题目描述

  棋盘是由许多个六边形构成的,共有5种不同的六边形编号为1到5,棋盘的生成规则如下:

  1.从中心的一个六边形开始,逆时针向外生成一个个六边形。

  2.对于刚生成的一个六边形,我们要确定它的种类,它的种类必须满足与已生成的相邻的六边形不同。

  3.如果有多个种类可以选,我们选择出现次数最少的种类。

  4.情况3下还有多个种类可以选,我们选择数字编号最小的。

  现在要你求第N个生成的六边形的编号?

  前14个六边形生成图如下:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAioAAAF0CAYAAAANXBKpAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAxH1JREFUeF7tvQXYbUXZ/690HToE6ZBukJIUke6S5tCHUgRpEDwgLXno7g7p7gZBFGkERQywXv3p+4v/+r+f0e/y3nPW8zw7Vsxaa9Z17Wvv59lrz5q55565v3PnF5P/ub4Qr0iBSIFIgUiBSIFIgUiBECkAUIlXpECkQKRApECkQKRApECIFPhCiJ2KfYoUiBSIFIgUiBSIFIgUcFafSIZIgUiBSIFIgUiBSIFIgVApEIFKqDMT+xUpECkQKRApECkQKRA1KpEHIgUiBSIFIgUiBSIFwqVA1KiEOzexZ5ECkQKRApECkQKtp0AEKq1ngUiASIFIgUiBSIFIgXApEIFKuHMTexYpUBgF/u///b/J//t//y/5//6//6+wZxTdMH23r6KfF9uPFIgUqIYCEahUQ/f41EiB0imAUK87OBmKaIwL8BWvSIFIgeZRIAKV5s1pHFGkQCYF/s//+T8dGpT//u//Tnj97//9v2v5Uv81WMBKvCIFIgWaR4EIVJo3p3FEkQKZFECjgtbh448/TlZaaaVkgw02SDbeeONkww03rN1r/fXXd/2n75tsskny0UcfOW1RBCuR+SMFmkeBCFSaN6dxRJECQwIVvthll12SJ5980mlTmvC69tprk9NOOy3OeqRApEBDKRCBSkMnNg4rUiBLw3Drrbcmxx13XKM0D3/729+SMWPGJG+++WY66XISrrOzcOTgSIFIgX9RIAKVyAmRAg2lgCJiMPegOfmv//qvZLfddkvefffd2ptJ5BgsB9qnnnoqOeyww5xpy0Y0RQfbhjJ3HFarKBCBSqumOw62LRRAm4KTLA60vLguuOCCZNy4cc6hVsKce+p6MQY7lkMOOSS5//773XAYV1MjnOo6X7HfkQL9UiAClX4pF38XKRAwBRDgAip08/e//32y/fbbJ5988kmae6Tu2gbfvPPcc885jRGXopmic23ATBq7FinQJQUiUOmSUPG2SIE6UUAaBZlCjj76aKdtQLgjxKWN4HMdL2lLND5piBjn5ZdfnmpVpE2q4xhjnyMFIgX+RYEIVCInRAo0lALSOPzsZz9L9ttvv+Szzz5LAYo0LnV2NrVJ3jQegNfaa6+d/PnPf+6YVfm0NHSq47AiBRpNgQhUGj29cXBtpYA16xx88MHJ448/Xut0+b3M4+23356ccMIJ7ifW6TaagXqhYrw3UiAcCkSgEs5cxJ5ECuRGAWlKyJeCk2ldTTy9EgQw8ve//z1ZccUVnRNx1KT0SsF4f6RAeBSIQCW8OYk9ihTIhQKff/65M/m88847rr2maxQYn3xSGPNGG22UCx1jI5ECkQLVUiAClWrpH58eKVAYBW677TZnAlHitzr7o3RDJAEVjXffffdNHnjggY6fNh2sdUOneE+kQN0oEIFK3WYs9jdSYAgKWCBCttYddtjB1cDBXwVNQxuEtPVJee+995Ktt946zakC2ZQELzJRpECkQH0oEIFKfeYq9jRSIJMCCs1VqC43nXrqqcl1112XJj1rujZFhLGZaQFmZ555ZnLJJZe4r22m3jaAtrhcIgWaQoEIVJoyk3EcraWAcoooXPett95KdtxxxzRfinKmNJ1AGr+0Krz/4x//SHbaaacE7YpMQgJ2TadHHF+kQFMoEIFKU2YyjqO1FLBJzyDCHnvskTz00EOOHhLebRDO0pgoqZ0Y4s4770xIBMelSKDWMksceKRADSkQgUoNJy12OVLAUsD6Xbz22mvJt771LSeQyU4rbUobTD+q+6Oxok1h/H/5y18SHGt/+tOfOrK1gRZxhUQKNIkCEag0aTbjWFpJAQnof/7zny5/yF//+teOSB8VJmy6X4a0RwJoFqS98MILyYEHHugAXBu0S61cCHHQjaVABCqNndo4sCZSQMJY/haMUVloych69tlnp8OWQG5TpIuvLRE4A6AcddRRaXVlP2NtTAzXxNUSx9QUCkSg0pSZjONoBQUkeG0Ei+rcLL/88skf//jHqDHwOEHg5e2330722WefhER4+p9AXt0rSbeC+eMgW0uBCFRaO/Vx4HWlgPKiWE3Jt7/97eS+++6L/hcZkyoTEO+nn356csMNN7i77P8jUKnraoj9bgMFIlBpwyzHMTaGAtZhVIL2mWeeSfbaa680sRl1fZruj9LthNqQZH7zm9/8xtHq/fffT5uIzrXdUjPeFylQDQUiUKmG7vGpkQJ9UcBqASRgDzrooOSxxx5LHWiVV6WvBzTwR9apFtpcddVVybhx4zocjiNYaeDExyE1hgIRqDRmKuNA2kABBKrNBUItm8MPPzwNRRZIiYL3P9wgR1lpV4iKIlz5Zz/7mbtJWqo28E8cY6RAHSkQgUodZy32uZUUsBE/yg+y9957Jz//+c/T9PACMRGoDM8iREgpCZyNoGolY8VBRwoEToEIVAKfoNi9SAFLAStUL7vssuTcc89NnUJVeFCAJlJuaAqQc+bggw9OHn30UXdT9OmJ3BIpEC4FIlAJd25izyIFxqOA/C0+++yzBG0KNWz0P5l9SHgWr+EpAM3efPPNZPTo0anZLNIsUiBSIEwKRKAS5rzEXkUKZFJAJp0zzjgjuf766x1IsS9pVSL5hqeAtE6nnXZacuWVV0ZyRQpECgRMgQhUAp6c2LV2U0BmHj9rKk6ghNhSw8ZPXKbcKqGZMvxEdVX3T8//7W9/m3zjG99IGc2m14/Zatu9/uLow6FABCrhzEXsSaRABwX87LNoS/7+97+7KB/CkW00S+ikE6CyDsFV9ln9oF/3339/sueee7ru2PDvWGm5yhmKz44U+A8FIlCJ3BApECgFLBCRoKe4Hk6gABZlqA20+x15XVQMMJQMsDa3Cgnydt555+Tdd99NixZC0+iUHCpnxX61jQIRqLRtxuN4a0EBOcbK50T5U6hV8/zzz6fhyCGGIctnxpp3/H5Wra0QCFS/Hn744WSHHXZItSoxH00tlknsZEsoEIFKSyY6DrN+FLAVfuk9zrPf//73XZQKgl5aitBGZkGJD1DOOussB7Sq7ru0UeoHWhWiqKiXxBWTwIXGVbE/baZABCptnv049mApwIneJm+j4u+OO+6YfPTRR6kgrVor0QvxLrroomSuueZKpp12Wge4bEHFXtrJ617f/4e/qTy9+eabJ4R+V92/vMYZ24kUaAIFIlBpwizGMTSSAjbq5Oyzz07OO++8WiQmk8nnf/2v/+WqFQNQpptuuuQLX/hC8sUvfjG56aabgp0vND6AKi40V1VHJwVLqNixSIESKRCBSonEjo+KFOiWAjY6hoq/66yzTvJf//Vf3f680vswo9xyyy3J4osvnqyyyirJ3HPP7UAKrwkmmCC5+eabK+3fcA//5JNPkq233jr529/+loZ+B9vZ2LFIgZZQIAKVlkx0HGY9KYAvxS677JK8+OKLtRkAJhRCfjFTIfh/8pOfJPPNN1/wQEUarHvuuSc59thjozalNhwXO9p0CkSg0vQZjuOrNQVwPCXSp2rn016IiDYIs4+Sp7399tvJcsstFzxQUcjyP/7xD1ddGYAVr0iBSIHqKRCBSvVzEHsQKdBBARsps9lmmyVvvfVWmtytDqQSQFFmXWrqLLvsssEDFesT9MgjjyQHHXSQA1v2CjEcvA48EfsYKTAIBSJQGYR68beRAjlRQOGwNonbVVddlZxyyilpYre6OHZKmOu9TkBFmit8VI466qjkqaeecjMs0BUdbHNi+NhMpEAPFIhApQdixVsjBYqigLQQCoulKvJOO+2U/PnPf05DZUPJ6totDeoIVGyiN0xWmIA+/fRTNweAFFsLqFs6xPsiBSIFBqNABCqD0S/+OlJgYApIONqU7SeccEKCRoVLmV4HflDJDdQVqEAmabhOPPHE5LrrrnOUs6ahkkkZHxcp0GoKRKDS6umPgw+BAgIomB24cOIcM2ZM8te//tWZHGxyshD6220f6gZUpC0RMOSdyCWcmdGqcNXF/NbtHMX7IgXqQIEIVOowS7GPraCATvHf/e53U98I1fgJvQBh1gTVEahYE5zqLJ1zzjnJhRde2AoejIOMFAiRAhGohDgrsU8jUkBCUH4bVBNGA1HHF46bvEjo9uCDDyYnn3xy8s9//jM1NVjhOSJhArqhbkBFpBNPqf/4Ce23334ul81f/vIXN0915DP6DJ8ROq5LWryA2CZ2JVJgPApEoBKZopYUUM4LhMnhhx+erLvuui6j6JZbblnL11ZbbZVss802yWyzzZaQLp/LalNsptq6TFjdgMpwjrLbbbddsuCCCybME6+68hn93mCDDZLzzz8/+tzUZSHFfiYRqEQmqCUFJARfe+215Fvf+lbywQcfOH+CX/7yl7V80Xdejz76aLLoooumxQdl8lF4bJ0mq25AxdLW0pssu5QCIApI81RXPqPfrJUDDzwwef311+vETrGvLaZABCotnvw6Dx1BQrjo2muv7dK0N+ViTN/+9rddWKwu+a7UzZGzjkDFr5qMmWT11VdPLr/8cjcddQsR99eF5uTuu+92eWLqxlNNWedxHL1RIAKV3ugV7w6IAldccUVCtVsuG9obUBe77ooVkH/4wx9cyvknn3zS/V7f1U2o1BGo+KHgF1xwQbLFFls4vxSbcbfriQ3oRqudw6fryCOPTB566KGAehi7EimQTYEIVCJnBE8BgRDrl4JT4w477JB8/PHHqS9HndOb+33/0Y9+lGy88cYdWhVFoQQ/Yf/uYN2AijRX6jfOp5h8qARdZ8Bo+UVj5H+vvPJKcsABByR/+tOfOkLg6641qsv6iP3sngIRqHRPq3hnhRRQPhFFKZx66qnJ9ddfnyZDk+NphV0c6NESjnpHq7LqqqsmVPLliuHJA5G3qx+LxwSIKV8wevRoFykjrVbdo2Qs2P/v//5vV6Lh5ptv7uCxCFS6Ypd4U4kUiEClRGLHR/VHAQQIAkLCgoRo+++/v1PHS4jX0dlU1JCA1Fh0en/44YeThRZaKPn888/TCI06mX/qplFRnR/6jaMp2hQ5nErA112Iq/8azzvvvJPsscceyR//+MeUx+qsmexvh4m/Cp0CEaiEPkOxfx35RHA2xQmQSAwuq2mp8wYroMUY9JlcKoQsn3HGGR1jrQtL1A2oWLALEMapWeY23yxUlznw+ymwbzVEl112mQuJt1mQ6zq+2O9mUiAClWbOa6NGJbMO748//nhy9NFHu8Rb0kDUNSrGnySrLZEgeeONN1z+Dvni1AmMZQGVL37xi6mpITQmVX/x3fjqV7/qwpHFY3Wtt+TTWOOwoIS1RJTZu+++m9Y4Cm1uYn/aTYEIVNo9/7UYvbQMmHoOOeSQ5LnnnutQU1vTSS0GlNFJC1J0spdfCin1d9llF/crGx1kixlmjds3E1mNQZGRRL6vx1tvveWimL7whS8kE044YXLTTTelY1G/Nce9zJ+d96EAnMZsNVZ6hv2f6IHfBnl50DDYDLWWXnUyv2UBFdHKjh8/lcMOO6yDxyx/1XnMvfBUvDdMCkSgEua8xF4ZCsiefuONNyann366Sy/fho1Twvv3v/+9O+HL3AU9MIFZnwqfYaxg1Snaghx7ss6b2ayGi3l69dVXXRI7tCm8iKJRJJcf0dVLX0QfOxa1Z9uxZo4sjYLVlgCi8E0hEqaJVxagY/wcAvbee+/k+eefd8O2PjnyEWvDmmvinDdhTBGoNGEWGz4GNleENfVWfv7znzutQlsuCYdLLrnEJR7jxG8Fx1DaJAka62PhC++iBI+erec98sgjyahRo5IJJpjAaVVsuC/3WMDRS59sXhDxhAVjtI0z7PHHH5/ce++9HeBI9/m5UZZccsnkqquualV6eWlWMHWRMwYe88FmL/PSlrUZx1keBSJQKY/W8UkDUGDcuHHJxRdfnGoS2rBxAjKkNcGPYKONNnI04PJNGlkaFQlhfXffffclK6+8sjPDkHHVmoIGmJrxfipfIvpKqvZ5553XaVIAKbzmnntud3qnIvGdd97ptBfShHQLQrNMOYBZtDdo3dZZZ50E0LHAAgsks846a/Lyyy93hBjbMF2FHJ977rlOUJM/ReCp6XwmugvQnnjiicnVV1/t5tSClW7nJU8+im1FCogCEahEXgieAqTI32233RJyiyBg2mT6EVhhkh544IFk2WWXTT777DM3Z/a7rEmUcHn66aeTTTfdNJlrrrmcjwig4corr0wBT94MgPBDi3LeeeclAEwACSno0VTwXAAMPiB8j28EwMACh277IxAHACM6arHFFkvmn3/+ZOaZZ04mnnjiFBiRC+Uf//hHGsEjLRT0wYTGs6nhM8sssziHUglphcR325+63gcdBFQ+/fTTZM0113RD0ZxYM11dxxj7XW8KRKBS7/lrXO/tSVYmDqJ8fvzjH7cqz4MVDjJToAUhk+gxxxyTAhVfK2I1AORhwd8CjcZkk02WCm60GrPPPntCDo2iLnweAFTk5wCIkDRNL77j/3z/5z//Oc2R04uGR7yBgH3ppZeclkYaG/sOaFEtKGvuEUARvQhFPvTQQ8fTVDVdoyLAa4HiXXfd5cysdi1GjUpRKyW22w0FIlDphkrxntIoYB0/eSg+BrvvvrsTcvYkXFqHKnwQvgIy30hQEK5MxlpAhgSvL0SeffbZZPvtt0/mmWcep0GRb4gV4HvttVfym9/8prb+PlaIoi2BRxifHHb1PvXUUydjxoxJfvGLX6Qzqd/K5INvBiYiKgtLm1LhtJf+aN+vB0C89dZbJ/CaaBWBSunTEh9oKBCBSmSHoCgAGNFpl44hgAhHlgBpSj6LboguASKAJtqQ8E7hyrYdAAoOt5g/pphiivE0DAhtEpmRJwSQItNJN30J7R7RRCaLF198MZlhhhk6wArABZDGuMnwu9VWWyVkNdYl+q622mrJ+eefX/vKyHnO0VNPPZVW8C4yQizPPse2mkuBCFSaO7e1HJlCbxEimHuOOOIIF4VgNS1+VEktB9pjp+2p97333kvWWGMNBzi4MH0A6AAoaFB4We0J2oU999wzeeaZZxJ8EJoC+qxWBb+ltdZaK9P8I1pMPvnkyVe+8pUEbdIHH3zg6IAzLw7GmKDi9R8KQE8coeEZX+MS6RQpUDYFIlApm+LxecNSQJEGv/vd71zirV//+tdp9IEPVppMSvlG7LTTTgnARKG4jJnPOKHi9LjJJps44TvVVFM5IY0GQRE200wzjavjQsQLfho2FLcf59XQ6G3HAN/grEsYNHRAo7Tllltmapa4h7wuO+64Y7LUUkslaGPiNT4FPvzwQwdwcWKPpp/IIVVSIAKVKqnf8mdb04ZIoQ2RUNEzzzwzBSnWH6Op0Ri+P8ALL7zgAAgRMvZUS1IuAMykk07qXr72hP8hhCk3IEdS65wrwFL3SsC+syeCdZlllnH0IMsqkTxESm222WaZmpYpp5wy4UWoNL+1l+//0zZBLdPaaaedllx77bUpaSwd2kaTlm/XlQ4/ApVKyd/uh1sNiU1chnBFuBAVkmXmadoGqWgXmw0UPx1U78o7gsnmiSeeSLbbbjunQcHvQs6jAipoUAAwaFB+9atfOR8UX/jyt+jXNDpCM/KAQB8cZBkf/wOEPPbYY452mH9ELzRP8mEhtBmTkKoli27iUZ9Xm75ydRh4//33XXFGNJzS5lmA2HQ6xPGFQYEIVMKYh1b2QiGmvjCgQBpCuU0bok7w0nZg7qEYocAIPilEpmQ5yU477bTORwWaAVDafAHoyM8iR2HoKQGLhuWee+5Jdt5550wNCyahhRde2JnLyIAsUGejhCygbjKdbSI4ct+cddZZKT20XuuukWvy/DVtbBGoNG1GazQeCQDra4C5gsKDcqBVVEeNhtVXV/3IipNPPrkjaZkSmNlQY8xCmHiWWGIJF0pqQ5nbkP8ji9DwFDlaBILtO9/BVw8++KCrnUQUkG8242/5sABYoKsuft9Us6NPS40T+kHPgw8+OHnttdfG06r0xezxR5ECPVIgApUeCRZvz48CcpwVYKFlTBeKZrH/z++pYbZk/XUwV9hqw3KQlZMsAIXw5CeffDL5+OOPXaIy1PNcOgmHOcpieyUTmg9SLNgFqMBjF110kcubgoYFk1BWsjgAyyKLLOJ8WGQSEs8WO5LqW/ez0RKBd9xxx6XZkK1jdvW9jT1oOgUiUGn6DAc8PmvuoJuomHGgVeE9m8I74GHk0jVrUiAlvJxkBU54R6uCiYccFwAU0Ye072hVrLkil07VsBHLMyoxYMEbFbiJBvr888/d6ACFmIQIU+b/WYAFfyAAy5FHHulqJDXNtydrmmU6E8gjfBsHZRy522SSreESaGSXI1Bp5LSGPygJDwkWfCtQtVNYjqtN2hTGK1U74dgkbcsSmBNNNJGrBCyzjk730PCKK65I1l577bRujrQrbTMBWRAhDYsAMeDum9/8ZkKKeF26H3CM0y1lB8jqm0V/SjlwXxsum2RQ9EPTedBBB6VZouX/0wZ6xDFWS4EIVKqlf2ufbtXzEOFHP/pRcumll7aSHqIFp3tO+hdccIETqH7qe7Qqiy++eFo4z0ZEUU+HxGUUA7Qgrw2n/5GYRgIVugJCoFXWJfCMSejuu+92OWoEWGabbbbkrbfeSv2ARnpm076HNoC0H/zgB8kdd9yRaqPaBoSbNq91GU8EKnWZqQb2UwIEAUARtN/+9reptqCBwx12SFbD9Kc//cnV8qF0AGnx8afAjwIggt8EUVEU9rNhzWhk8CMgVbw0Ular0pZoFZ/IGjfaFAo0Ukl6qEtmDmVHJjT3oYceStZff31XBXqkatVN51lAL2ZGwrjh0QiCmz7j4YwvApVw5qJ1PWGjI1X397//fefU2OaNzw/VtsACDQBmiTfffNM50GKeUJFGK1z//ve/O/PP2LFjU17yzUStY7L/GTA0IJKMytPwmxxBhwI13I92S34aCGcEs4BfG8NyLZAmCdzll1/eRlaKY66IAhGoVET4tj9W2gByf+Ckh4ZgKAHSBlrZKAqBFPmt2ARtfEe1YASpijfqpE8baKdIeOZXC5afQRto6Y+RDL8rrbSSyzEjQJgFimVKs064AnrWPNdWQC1aoPmkurKfzbeNvBXHXA4FIlAph86tfoo1UVj/CQQCJ91HH300Pa22lVA+GIEO+p/vByAa2pBm0ZjfAfxIaiYNgHK0tIG2AnkWmJEvBa2d/jcUaLPRLKKn1Wzl5eBt27bt23n2P9vfVDWPFkzffvvtbu2Kx9S/vGhU1Rjjc8OkQAQqYc5LI3slVbo2YRwWTzrppBhFkMNsW+GL5oCEZoQx8380LxbI5PC4YJtQJJSic4jwIasvGWttttoqnUAtKO2GkNLwVA0CLEDG9IivCtoq+/8YCdTNjMZ7eqVABCq9Uize3xcF/JMu0S0k0vrggw9ce202TfRFUPMj+Q9YjQERVESt4JOh76sUzoOOsZvf23EiMDEnrrjiis7/iYv/Ve0Q28scUNX51ltv7ciy2w0dirpHGhW9v/rqq84EpPUbk8AVRfnYbgQqkQdKoYBOXfIDOP/88100i1UZx9NYf1MhEGh9fHD+3GijjdKQ77b4VQisQMkzzjgj2XbbbV2SNtEoBBMKztGY59ZZZ53k61//evrCEZr/8Vp11VVdKDpRX5rXqp14fRMumjpoTNi3gKA1ZfXHzfFXkQLjUyAClcgVpVDAnvZJ6rbPPvu47KpyUmyTH0XeBPezserUzml8zTXXTENJeznN593HMtqzoBdNEgUGn3nmmVSIik5VA2LCzmeeeeZkwgkndLly7Iv/8SJ/C9ogIrm0NqqseyUAaGnI59/85jfOH0rhym2phVQGP8dn/IcCEahEbiiFAhaIHHvssS5lud30qj6JWdOUVNnWudI6rpZCsB4ekuUEyv84ueNHcMopp6Tqed9JtM6aFt+ZWKd63slyTCZZmb7svWWOWeBQ/IUWgjw4Ko2QlQGX/00//fTJ9ddfn85b1f4p/pqwfinXXnttQhFNrqrXcQ/LJt5aIwpEoFKjyapzV7WBvfTSS26jttlByxQcQ9HQ92+wwEoOmvJxqINmQjSF3muttVby9ttvu6HjZMp31rG0rnylOfJBCA6eiy66qHOgrZK3LE+pH4SPzzfffMlmm22WIOBvuOGGhPpDN910k3vX64EHHkj+8pe/dCRArFoTNBSfUF2ZNa1aU3VYH3Xl+bb2OwKVts58ieOWoOc0eeCBBzq7e2iXL7ytc6/1r6mLalvjAZhQTA+6k3/Fj3wJVfiNxB92Tqz/Cb/D7+O8885LT/gjtVXU99ang8/wP2HSX/7yl5PHH3/c+c4wJ7zQ/Oiz5klaDPUvRAAgvxnyIR1zzDGtKdpYFM/EdrMpEIFK5IzCKSChT1Xg7373u25TDi3Kx/rQZJ3C9b3MVYUTbcAH2EggMtqiVVEoqTQRdU6wl2WWg2SEvOOXQ1SZAPKApOz7576mhxpCyyyzTHLooYc6ga7L8lSVGqB+BiowBrg66qijXK2peEUK5E2BCFTypmhsL5MClInffPPNXTiyBGRIm7L6gjBHjU0EBgIPAU/CMHxqdMIN8WTrE90KSU7yZ511louAwTnTnvTrzK7SpMjJlPwx1ENCWyGQUuVcWTAFnS+88MJkiimmcInSMMVJG+Fr76xzdOjzI80dYyGcmurK8Fu8IgXypEAEKnlSM7aVUsBqKPgnid0uueQS97097VdFMr9/5NwgZHTJJZdMpplmmg5nx0knnTRZcMEFHdAiNb2vfQkJcIme1jTC/4i0AnzhC+EL0KrmYNDn+loVKvvusMMOHX44VQIVy+doHIjiwYkW08/yyy/vEtERMUN47x/+8IeUHNaUpTEKJA9Ks7x/r7UAUGGMp556qsv9onXur7O8n19Ge3VY72XQocpnRKBSJfUznt2kha0NF5X36NGjE5zuJNSrjg6wAgDH3k033TSZYYYZXFjoUK9JJpnEndipbKyNOATQlcXCWXxEdeUNN9zQhZLakNesjbgO/5NmiPET6k7uEUJ/dcq331exzC2QuvLKK5PJJptsPN5CwzLnnHMmX/va15Lvfe97HUBf4MRGDFUxjuGe6fsHffTRR04jqbpK8s0JEcx3S0u7xqvet7rtc9Pui0AlgBm1i7gOAmK4Pko48C7VNupgohgk3KXarnLzkvkJNTUCAhCCiYcsplQn1ovsuXwHeOE0TM4LTu2ALjvWKsfSLQujNdpmm22co6k1DdWV56zpB2dhnIYVjqzvqpwXmZ/QNGDumWOOOZKJJ554SCBMSDLJ3t577z03pb7GqErt0FA8Zs2IWtdoTs8+++wOMG/no278pkg5zWeVPNXtWm/afRGoBDCjVmho4dtNygrEOny2PigUHAQIyDdCJ/mqTybqx7333pvMOOOMzraOpkTCQJsRJ8TbbrstGTVqVCpgZppppgTHYDtXddi86ONjjz2WrLDCCk6r0pQL3wh8iZgrCROd5KsU7vRFFa7xSSHaDWdT+AmH2rnnnrsDtACEeTE/+HT5GhXtEyHNmxXeAipot/bbbz83HxpD3cCJ7a/VGlW9b4U092X2JQKVMqk9xLP8k3mdF7U2Jt4pXEbSLfIr2DTgNv9FVeSHxpx099xzT2cy+PWvf+26YkGWNmGEDY6QE000kRMkZA4lwsFXCVc1lm6fqzGjeaBGy4knnljrF35PJ5xwQrLxxhsnlGSwIIVTcNVCxfbHAln4iYyuABfyplDqQOZGZaXdbbfdXK4hnx9DA8T+utaaeOihh1x6/SY51toDZbdrLt6XDwUiUMmHjgO1YrUnNESSLjaxp59+unYvKvbSb/pPMqvdd989zd3ha4Oq3HTpCxFIiy22WHLNNdek82f9Gmz4LkCGk65OvbvuuqsDOqGqg7PArrQLFJObaqqpXIVlXsstt1wtX/SdcF8cnW2yMQnLqsOvfaDim3L4G0BF+DiOwJiFxF/TTTddcvvttwevtbOh7pbeaFBxHqZUxsEHH+xepCao24t+Y7bjYIKvnV3vVsNV5V42kPCpyY8jUAlgorSB8T5u3LgEIUjyJLQRdX6xKRFFg7+Hv0lXqZJnynn+T37yk2T77bdPfvvb32ZmMLXCno0Xh2D5qgDAbJbX0DYq0Vuhu5b++NiMHTs2BcGAyzq+AMT0+4ADDnD+KZpX8VbVQMVqF7XN+ABS/ycqC8AsoMI7Dt6hmxdFY2mvlEAQHxX4jPnBNFfnFwfHK664wq2ZoQ5bVe9nAYixQrsQgUqh5O2ucW1epMxef/313aLmlFXnFydcXtji11133dRW72uPuqNQ/nexseAHQErz4UxR2oDRnmB3x5kWsIJPi92kQ9uoRGdU71bYcUonPwyCsSnXa6+95qJmfvrTn6YnXmXgDW1ehqI580USuF122SU1A1FUUZFyms/Q5kzrQxmb6ee7776brLLKKk4zXBf6j0TXzz77LDniiCNcVJkAsc1305RxjkSHqr6PQKUqypvnSpAQucAJRCexLPV96P/TxqV+EqaIECFXRJYvTlXktxuLhFqWVkSbEUCFAn+cdAkpveiii1ItUdbJuapx2ZO7TCCiO7VviCoheyuXFS6h89VQ/WNsgDH4S1V8rcN2XQSITAocUhZYYIE038obb7yRAukQx6J+S3MH7b/97W+7A4oFyf6+UBd+s/1++eWXnYbbB4/WXFz1um/q8yNQCWBmWbT4dCAIJVzqspD9fvqqUch7+eWXOz8CnAN9u31V5LfmNmse8fujjYooGQrJoU2hqNzrr7/ubg01pb7obM0fhCXjRMs8WI2DP2d1+5uxcuJdffXVk/vvv78jdX6Iwj2L57XuCa+mVhGau1lmmcWd4JlD8WhV62Wo5/qmH6KbcE7HD0r99oFj3fhLaxxTLw7caCW19u1YQpubJvUnApWKZtM/vXMaxGeCS5trHcGKNlxrTuEEgpD/zne+k46vagFiN5huopA46c4888zupIvZB58V3++mIlbKfKzfN07mCEAAsf9dE/gMIpB1l2yvOskLrIU0L8MJfPV3jz32cHw2++yzd5izql4zWX23QAXT9U477eTy9KCB9AFK3fmM/pOZ+vDDD08++eST9FAZNSrFr7AIVIqn8XhP0ILVxkO599NOOy1VxYvx67iws/oMAZ588km38SIwdRqpgPTpIwUU7VzIEVBaFG7WfT/60Y+c8CD3BWPQ73RPltmoyvFZAcJnohdUh0UmH423yn4O8mx/HaEpwh8Kx0fxWAhjtAePoTRw4jm+xwSM5m6eeeZJfve73wUbWSbe15jISbTaaqul5QDsGhlknqv8rdUAS0MEEFOkoAX9Vfaz6c+OQKXkGbabK5sTWSjHjBmT4D/Ad9auW3LXCn0cJyyiM6iXg9NgaKdDgUP/NM6cEBW00EILufDRc889txa5ISzYxe8JAc5pkMsKxUInvYLGcawl0uzDDz8MonqyAKN9zwK1dk7QrgJUKNegEPhQT+3qN1mPCQQgJUHTLv8AgzYFPxzWk/XNadq4QxpPBColz4Y2HJ1CKOJFHRBd9jRfctcKfRwLmmiAueaaK6HmTGiXAKRVVytZ1SmnnOJ8BlBr4wtRh0snQei+4447usRoEpb6LjQtUF50JYycCC2Bsrza7bUdmUF9c2hWO9oXSJKIwzNA5bjjjhvPfNJrH4q+Xzx08cUXO6BCJF3T+IrxWMdzaErhRfYFO8dF07rN7UegUvLsS1XIO+HHIHO0KTaTZhNUpj5ZtRGTDRWnR06KIV3WZKXNh//hmwK4+uY3v5kWI6zDRizAizqezK1EX0lwa3xVC/K8519ri5BztCok6KrysoDQ8ldWn/T9448/7opjEvljTYyhHmAAv/DWSiut5NZK0/YuXwOuv3Gux+cODV7Txlzlmhnq2RGolDwrEtgAk+9///vJgw8+2IHKQe6hevgPQipttJhRACqkpA/p8oEKf3M6JPvpUkstlUb50Oc6ABX6+Ic//CHZZJNNnJOpBSn+5hvSPAzSF3sIIHx8iy22GKS5XH5Ln1555RVnMrzzzjtHbPMb3/iG06bccsst6eHFavlGbKDkGxgfociYda25seRuFPY463Rv+YsH4nfHuOuyJxRGpBIajkClQCKLscXIltE5ORGTj6rXXk1c7BKSEvCE95HMClOQ/a5KAGCBCp8JE8VXYNFFF+1I8mQ3Ll/4F8hKwzZtBZlO8fyALMdEWwG4sviqSnoXQSs7h5x4AZl33HFHB0irwteD0gto5SjXQF0f1r5/0S/SE0w22WTOpEBUmfYNgfyq58vykPry/vvvu/ILP/vZz9Josqr7mSdv+Zow+zdaYQ6bMmX7B4BQtWB50qestiJQKZDSPhrXAmYT4hQCIm/Soh6OlFq0vON4R3pwolAk7H0bcIHT0tG06G8FPDfg4/DlL3/ZpZm3gESe/+ov49HnsvqcJeSs/wl9IiQcdbzyivC/pl92vfEZPwIcUrN8RcqghQTX1FNP3VElmfpE8D5z8/zzz7uCigCY+eef3+UcUkKxMvrYyzMsj8HzXKTJx5wrLXAVQLCXMeRxr/YKxkreGMppsKfZaLrhkkjm0Ye2tRGBSoEzLg2KFrWExT333JOcfvrpTpvSBgGik6ENmcXkhUmFbI/QqWyTlz39iAUEWqjpQYK62267rQOkaD6lwdDvqgYqduMUIKSI2t577+1O5qGcyAtcaq5pOz+MmbFj/iG03M53WYcDPZMKyWh3Jp988hSwTDvttM6Phv9jCsXZmYrD8t0aKoy5aBoO1749bPAZ8xRgmErQWsNt0CL4wBcNGKZGnz5t2dvL4MkIVAqmss+8VOHlNPXOO+90ZGktuBuVNi8BYk+8gDSKFhJJI8BW5ubsm3BEIDJPcrLFn8BqTdQ3q/rle2rmCIBVRWTxmPpIzRvU8fAY11Bjraq/RT5XIFIhpdACMOCHZpcBVsQr+KOhOcEMha8KkX4U7bv00kvd/x599FHnT2TXSZlrodv5sIAXDQKlMWRak6axDUDFAmJohzPxNttskzqs2z2iDD7rdv7qfF8EKgXOnhhapw0W82WXXeYcSbURtWVh23wDWrwULcR+j+bCN70UOC2p8PY3ERLvLb744k79Li2Yr22x/SJnBL/RxlR0n4dq3wo47tl2222T448/Ph2nhHfTN03xkBWaEOGwww5z0XXWdFEGLcQXdq2TlA7TDllcySfE5WuCQt0TrFkHoLXlllu6MVhNaYgAK+91KT6z72jJMef7IKUMPst7fCG2F4FKgbNiBQifP/jgA6dN+fjjjztq+hTYhSCatoBNm53AGwKVZGQ2JX3WicT+TypVnZpt+90O2DeHADrwZ0CdLUfGodrihPzAAw+4KsSPPPJIt48s7D4L8ugXlWvR3PmarMI6EEjD4hGp5iUk0KastdZarnwAV1lAwNeQCJT4/O371hTp56G1k7Ums56bJXhxoF1xxRVdOLLo2RbzogWWGjvvSmgpHmsDYCtz2UegUiC1fQFKmnzs1VY93QY7pn+qsJsfzmik3SbtuT0RZ23eVhDZTcKeSLudTmWg5X4cZolCmmOOOdzpm5MRKed5P+SQQ9xnvTBX7brrrsnSSy+dbLjhhi4BXNUaFZ1oOalDy7vuuqtbMjT2PstzaMfOPPNMZ2a0PjtFD97yhfpjeV/Pt33N+j7PftqDQpY5U33BFEXklL8OWTek+Gc9WN+sqDlIXOV7/MK0N+kglef8tbWtCFQKnHkJUB5BFVSE4Oeffz6eqreti5xNkM0ObQZaAECLwEoWUPEXPpopbP6cZno9hWqTxj8AHwZyV0wxxRTJTDPNlEw//fQJzo68TzfddO6zfeEUOeGEEybXXXddCjqrnEOBXZxGCUcOLZlegUusq6aZG/L3YKpQivc2HBCyiGPXieVZHGLxo8Gks+eeeya77bab87mwZh3uB9SjnSK1gN3fupqIht+EGYwgCczB9iDV8GGXMrwIVAoks1TQnEIw+Sh/ghXCfFelkCtw+CM2LTpgr8eM8oMf/MD9xgcr9uTH94A9CoORHIv8FHjc96PVeOmll5Jll122I3QUwNLNa9ZZZ01NeGWZEoYjKLlS0PIAvPqhxYiTVdMbrDBFgADk5Lha0yEN1G1pcwEmRBmdddZZLsMqmZcx58w555wuOonwfJljtf5433777Z0w9tfkQJ1qyI/hNWpMoVVR7baGDK3yYUSgUuAUSICREIjEQCx8bRQS0m22ZYoWTAHOaJhfbHSGdX7kHk54hAJSU4QqxgIUCGi0Mb2ckrkXPw58Uvp53XfffS5zqN/HAtlpyKbpA0AYsxTalDbzlE8kaxbETEcSP4RzWy8ORpz8WUeAdIDJNNNMk64lKoRTtVlRidwvE8/111/vMh0DcnQIaysds/hM+xkBE+Kxth5C8+aLCFRyoqjvPyHNAJsCtVaokszlmzT0v5y6EWQzWSd8CRAtZOi03XbbpcXkRD99T1IsirWRhM3XeEwyySRuY+hlU8hDC1K0P0HWZPq+DtxDCC5gTbVtBJ6CZIaKOiUQS/6er3/96y6s3PJYW7RQgA7AB4VQWTdaSwAUXvyN75Voo3WC1pOkdDKdQS8/Mq6iqQ3isdBJ2nFM0mhVVMG7TY7GRU1GBCo5UVaC12pK+ExeDlVHtpuh70CXUzeCbEbjZiHbUFktYPmeEK6MpoTIFa7f/e53CcnXttpqK3fKyzLJoIWhlg3CuhegEiShuuiUdYZkvNCUpGY4i8pk1hah2wW50sOBaEPOHhxB8RdD+2Rz5TSdf+wehWlCVZoFUvSOloU1x+FAEXCYe8hCi4Nt1qGs27lo6n1ai9rf2MMwZStHVKTZYDMfgcpg9Et/nQVUcODbcccdE3IntJlRJSR00rfmL/s/iIlKeu2113YABRPPl770pUyAQg2eM844w/lk6PTXhhMe9FIWX8aNCWr55Zd36njRsg106GXZCtwJlLz++usuIR5mRoHlXsyGvTw7pHvtOuTzOeeck0w00URufUmbYg8DHA623nrr5LjjjnNg+Cc/+UnHWms6sOt17uwhDA0x5lgigbjaxGe90q2b+yNQ6YZKXdyjTUCJzfibkxu+F2LUPMwNXXQluFsE4gBsaE3shmlzoZDtkrohRN8MBVCWWGKJ5Kqrrkoee+wxlzRLV1vMHfINkI8NOWjuvvvu8erZRCHyn2Vgza06+QKICTO3QLkNYMVG/ZDXCcA/lPP4xBNP7KLbZp55Zue0jjOyiqjSTgTEnVut1XbyDXsU6Q2UCiH69fQvmiJQ6Z92mdoUG/ZKCXAWtk7BbQUqItSxxx7rnIptxIAEKmpmIjLmnXded7rzT3iktaceCpFTvrrenmRymM6gmxDIo5NolDjp4tRrayVZYRT0YErqnF1/8iVAA7Xqqqu6g4Ro2hagInCGAOUwBRgBrIwZMyb53ve+lx4SJphgAvd/3rkHMytZj3Gq1eGrpCmsxWOgq0AJnzGbsd/JlB3XZf/TGIFK/7QbD6howyN8FrWf/Cbkm9EWoCIzl/WV+OSTT5IFFlggmW+++ZyTGRcJyi644AJXJwOAok3RnvAoekaiPJwglVzNV6OqUmnTBE2Wr4n+h3P2euut5+jCZc0+0Uelc1FLo2e1nnzGtwkawoc2UkrguYlaKWui5vMTTzzhHNTRVBI5xzpFQ3fMMce4chK+WQjAssgii7g1S/JKaViguOU7S8Mm0jFLbFhtp/Yioqco30CEYVu0vjmI1PGaiEAlB6r6i//mm292JgwrUNskPCw9tGAx10w66aROU0IYLacyHPYEUGz0AZ/JEkuyNYqekSPEboT+grfAKIfpDKIJK1xth8RTnNTIEOqn+28aWMt7MsQr0AkhS7gt2jyrqfJNRXn3IaT2MLeiJfnhD3/Y4eiOIzu5imabbTZn9rGHB2k7MRuR7ZdaXdaEK/Ma79J+tgWsZM0tEYmXXHJJTJA3AONHoDIA8fRTbXK8o1JGgLz11lutiELJIp9VpbPpEylgIwxmmWUWdyrjdOabeJZZZhnnvHfvvfcmo0ePTvbff//kn//8Z7rIhxLgOUxjUE0MBWz5/wsvvOCS3eEU2iYAnOcECfChlkdrh+O7Bdgh5MfJc7zDtUVG2o8++siNX8CCpHhoTSjQicM2vhYLLbTQeICFEGe0MYCdW2+9NfUbE31lCmkrUGHc1EZCq0IeqHj1R4EIVPqj23i/ktpv3LhxztmzrSdbe2IVDfArGTVqlLN1czKTTdyqlRdbbDEXMsq9yhz65ptvOmc/Eub54CenaatdM4TUkuKcqCgJ07by2iCTJ60J0RlkZlXlWz8ibZBn1OG3WZok+s0+Rj4VmXYwXZDJFp8W/MWyHHABLEQ5ogVFU8OlfbGtQEXjx0xGiYu20mHQtRCByqAUNL/HJwVntDan6LZARepg6oagOQGgyDFPIAUgcsQRR7gqxGijuKyWgFwEpPdW/oa2O6Thk0LYNj4qbTr157hMUwEqIQIt0eRRDdg34+b93NDas35zArxE05G1VgcEC2YALPfff7/zwSPfSlbyxSWXXNIlb7zzzjtduYs2r1nRFzoAiF9++eXQWKAW/YlApY9psoJUjMj/sPNir9VJoo+mc/nJcOaAbhG99fvo9jcWZIgur732mrNzC5gAVGTuoRjgww8/7Opi2N/aEG9U0l/72tdcPR8unXhzIVQNGrGmLk6pREahjreRLFUOw/KJDzK76ZcdX5lmLIEUgWnClaGtrjY5vvvO6UTn7bvvvmnEotUyaS/AjEHEFAezLMDCoWSppZZyZqNB59XymN1v/X2pl32qG94c9B4BPDlqcxhDI6V10s96GbRPdf19BCp9zJwYz54UOI0dddRRLjKl6k3Obv7+wtZixoTAiYeQ3yOPPDI5+uijXbEx7NW6tNB62WjsiRTAgbozy9QDcEGborTvvgraambI7Et1ZWy9/F9Apo+pq81PREfrOHzFFVckm266aUf0U9VmH5+//NMzUSXwFWsDPgPMw3fW+dKGdZY1Hl8bhY8K4cp33XVXCohDE3xFMa+lBfsYZlhVR7ah/1n7gKKEACyzzz57h4YFnxaSxA26H1qBb/vK/3EmP/zww10W2NDmy9fO0VdMjBzONKY2a5t64ecIVHqh1r/v1WlM74Q3slgk5ENgPivo/VMvDoQ4ynHiIbHa9NNPn8wwwwxuo2GzBvUDuKwGo9tNQGPXBsdGBdDglIaQRS0844wzug1tsskmc34pyjUzlJCCvuQLQdAJpJQl0Ppgj1x+4gMVzInMjcKRtfnL+TGXh/bRiOUzzT3/IwSdAoA4qsJX8Bgvqk7Dd3wnNbhywNgQ4T660tNP1FcrRHHgpg4QvN+WUFIrMCEgmWhPPvlkR0vRZrh5EeAEsADyWM9E7LG+OaRwIBp0P7TaLz4rHQF9ZF8hOpBnqi89MULBN1twx2cSXlKKwJrEmr6X5UHiCFT6oKLVWPCZBYpzI9EpWuBVMp8PUuxGcfXVV7uU62wkvANYyG5qbc1TTz21i1zCVq1NqlugknVS4H8IWsxAqD+JDiA3ChE9RAsolXkWzURr1Mz0lxNfGy7/NIZGgg3ObvwWGFRFE9sHzR/RSBtssIHzR1pwwQWdSYUXAkV8hpZtrbXWcho1tVGmpsyuYQlkIlS23HJLJ6j1fVV0Leu5AgGMF6C2wgorpAUbNZ/D8ZkFEfQZMy6+LWjO8GexgLvfMfmgXeAc514iCJU9N1SgIjpqXwbAkT9KsqJMgN7vHFT9uwhU+pgBK0RIC7/ffvs5IWyjMEIAKr6we+aZZ1x2SXJHoOUgwuZnP/tZ8tJLL7m/SX4lXxKECp7qdiPrllS+xilLZQzd8D+hT0rklrVgNQbu32effVzEC8K66ZelO1opnD3hMQsE+Vy1RkVCXvzO3KCVIPwcnsLxkn7zIr8Q4BRNmvgMLRkAwaYZL2NurRC2GkdMVQBifDCy+LaMvpX5DI2RatLK1CsBag9dVvNk+2e1LvYenN9F40F51Acq/I1pCh838REalW4PU1XQV7Shj5gZv/WtbzkgF8Jho0x69PusCFT6oJw9jV1zzTXOBk8acwGVqh0+fXWjNgxOi3jj2+JiFhwAWDDLyOGVEzxmmV42GrupyOHT2pXtgvU/D3WiVv+fe+65ZOWVV3Y1NJp+CZDAV8wDpzAuy2MWEFZFD4ElzRGaMnwcZKLyhQcalI033jgVMEsvvXSqVSlzDOqXFRT8D60oCQnxuWjDSVd0oPo2+4PvODsUQNFcWUBt17N1iB9U06G1YGsLEUmI5nfKKad0zvlk1w0RqFggL16DdjfccIMzk2lsIfa9zPU40rMiUBmJQhnfi/lI6rbHHns4zQCXmK3qk5gWhN1Ebr/9dqcxwUbqn5TshowJS1E5K664Yqrt6HYh2dPpcJ9Fr6x7fJJrHOS8oH9sqGTO9LUL3faxjykv/CcCeHbu+B8aCaKeMJ1ZoeHTrfAODvEAu9Fi8sF0YEGKBQQSWHyPkAEQo7oHIPdqYsxzvJaW9AOnbQuIfa1BldrSQcZtecsCNMAj8/bkk0+mzup2PxvpmT49LE/ktRfawx+aOjR2mJcUUYgf1KCAaKRx9vO9f2jUOkdDjC8g/oI+/4l+/Tyvqb+JQKWPmdWCOP74413YbGgCUoyvzYiTCP1kUWQhfKv5ePTRR1OggoDEkbVM34Gs6bCndoQIZhCS6nFZTVZo89ALa2UBFX6P/xDhyAKXvbRZ9L0+WELTRdp1XRqT+i4wgh/D3HPP7YAKgkaRIVVrMASI6S9OmmiyNAY7P3XlMwvs7emePEZ777230yZZGhTNP720r30LUzV+T5SQwBkbTYpKbtQFQGoszz77rDNny+9MTsJ23fRCoybfG4FKH7MLI7Fg0KZgbwyt3LkPVFgYRGEg1P1TOX/bon6EzsnhEQdONq8QBIg2Vvpy4YUXOi2DLfRV9ygNX4jAlqjjiXYCLIa4eYnPRHu0XLYuk+U1O3/Mm3JvkP2U8UlAVilsrCbggw8+cA7BClcORYPVx3Y1HnDUQYsxAS7XXHNN59DO1YuZd5C+9PJb0Z48QkQlMS/4EGEKJmpRpp8qeafX8dBXNMRohSiOaQGxDma9tNn0eyNQ6WOGWejYSEHEEvR9NFPYT7I0KlmaFC0OC0RIfAVQ4cRLpt0qVfIikBVyfCa0j83VhlHaE2JhhC2wYauKZ14+/vhj5+vBZswVIlCRpsQ3Kej/WYCZe3FYnWKKKRyfkVPFalyqFDZWc0ef0NohFDG72Tmos0bFCkQOLvisYU61cxDa+NQfImUokIjWl+vpp5924e7wUag+Kllbhp0DTPFjxoxJI62031qQX+C2U5umI1DpY6puueUWl/Y95MWtE6p1jrMC32pRtBGwIRMVRC0PBAiRGNYRtg9S5fITH2TRX3w3bCRM3Re2+q+5IEU5IeL6f6gaI6sJEa8JoPhARkCAHCr4qAA0VRNG2oxcGKbPRuyaoT8AYqIzzj333MZEZ1jAS00echuhbbXapCrB4lBTBzj5yle+klCJGE0EfQSooFGR6Sc0gDXUWOyeyh576aWXunBl64Bc94NXn0twyJ9FoDICRbWwJTAwhbB5UTAvSyOR9wT1257ttzYeK1TsCZ5nKMMjCbrIg6ATpFV599uXQX/nb0D8zQLnNIjQU18HfU4Iv2dsmBWXW2459261EiFuxJaPLKiy/bbzc9lll7mkf2grcCi0vGkBThVzkUVr1sJqq63m6lCJ/iHOQ7f00hgxt22++eYJ82FP+CEAfp932JvQoKrml3iO1AYCKjjT1mVe7MGLPqM9pboywRkW3NdlPN3y3iD3RaAyDPWsYJcfyjnnnJPwUt6HEEwjIzGAGN4HJxIgr776arL77ru7CAxySCBEcPCyG0ZIpyyNB7MI3v8kqmrKhQDZddddnX+KeCzksWVtpnLOtt8RWUKac9KqI1TOPvvs9CRvT/Ohbc743JAnCefN0PrWL1+wlnF6BuTjY2eBZNVj9DV0HAzhG8ygABMryDG9y/RTN6AimjNeZAs5hgjtl1YlVA1qvzw36O8iUOkCqOjEgRYFB1obGhuCaaRbJrAaIFA8Tlx4+6+99trJxBNP7FSo5CVAmJCIC9U3V4gOdixwBDmRV5y02LR4Ucagbq8XXnjB9Zn3cePGOXW8H47c7RyHcJ9S4pPZGOds8kUwJpVOmGSSSZwPFCd6aY2sbT6EMagPrBnWPTxGRuW68ZbfX3iMLM+E+JPZtWpg4s+1NU/TN0y8aE0uueSSDn85+KWuQMXSXJ9Jennccce5MbWlTEgv6zwClWGopZMeiwL1I8j+7rvvdr8QQNEJILQFnzUsbQIIeDYpsrySLwJgQqioTaNPXRZOktiDQ0T3Up8SQYIj3eqrr56sscYaTkVctxep5NVnQi8pEKmTYy+LOZR7xS9kDz3kkEOSb3zjG87cM9VUU6U8RqQGPEf4NT4SoQJ+8RmCnRpFdeOtrP6S0RW6oy0KSVMqnteBigMhpmjKfJDpVv/XPlZXoDLUOr3uuuucJlXa7FDWcwj9iEBlBKCiRQHzoGWgbLkPVEKw63bDTHJ25B3hQGgiTmqAL8xZnHoFVhAko0aNSm677baOJFDdPKeMewQMGQdOdvQfh7S6v8iKSl0c1Y0qg5Z5P0N8hhmLCB94jBw+JOoiWg6tnQXF3/nOd4KNapIPAX4qVBqHv9B61ZHP1G8i+9CivvLKK8FpVARG0CqQEA2TzxtvvJHuQTY4AKAiH5W6Rf34a44M4CeeeKJbJ9apNu+1Wdf2IlAZZuZ8pyfCdfHlQLsibYvuqZNGJauvhCriq0KonFLoI0y233771Mu+KiaXrwzP10bGZxY0pivrMS9gWdd3qtByeqc0gx1vXcCwTsVDndTRshC5gcZOYAXfKFWTrYrHRGvfL4t1QYQfABJTVl35yvYboUj+DtYOe5kdewh8xhzA/5gKMVOpf37orsKTOVTho2LHqH0ixH05ywEdExcae8tjIfa9qvUZgcoIGhW7cXErToC27kodnGmHYy4faKGhQC3M4ueFuvudd96pVEVsQaEcNek3IdQUwCN6RAKyqoU06HPtxoqmi4R2OKDaE2adNy7LZwjHQw89NMFXBbAy0UQTubT72sAHpWW/v7e0ll8WDpzMBb40dTqUZNHA7mXwFutceWzsGqvaHPTee+8liy++uBPcw12AXhIHsk/NM888Hano7VhDWzcWULGfoXnEREpleM2DPZz1y89N+l0EKiMAFatV4TNVRgmLJZTMOj2Fthi6ZVJ/fCycp556ylW4ZQOgKqlqgHTbZt73Wdu0fBkwxW200UauuJe0K1VvsIOM2wIV+IqIDCXisia7uvKZn2MFQUnEFjyGIze5Sqy2bBBa9vtb8ZZd1zjP4+TYhLVu1xE0IjSZVAvSZoXgxAmIxTeOPDtEWp100knuhbmKvDv2haaLKu/wEBo6fcf9aGQUNRfimrHmHfJy0XfMvXYfqPN+1u8aHOp3Eah0AVR8dS/CkeqqEvI2s2veE1R0ez4IkEAhAySnXVSqjz/+eKW2bNtHLd4rrrgi2WWXXZw2hUXPplTni3FZh1IK9REqzulS428Cn+mkyDtmRXgMoIKWsmqzg9Y5dObCX2CdddZxc+CbFerKaxoHa4bIMko02FwqSgRZ1fjoE4kcJ598cuckP/PMM7u0Cfii8G5fM8wwQ2qmnnDCCdPv+A0O6oCeENeM1RwSDIC5Ha21XRsh9rsqnuC5EaiMQH1fTcffeKDvu+++zlGQq+oNdhAG8k+RWizrr7++EyJEoVD8q8pTiVVL8xnBQYQPznTSpoRWb6nXObEmLT4DvA4//PBk//33d02FGHnV7Rg1f1YzxJpRuQZMQJyAq1Z30ydlY0Ydj1MzYbEWwFSt9emW5ln3ib7iNf4m5BrzKePlYvxVriWACuZm62zdz+cllljCZT0OcW+2DsFE+VB01O5x+n6QuW7abyNQ6QGoWNCCxzzhvYT42Q1WJ/4qBbuGZBdp1md7Uvd9bSj+xQYBIMDcVaUa0ldJH3PMMS4iwCbdq/sJxNfaMTcfffRRssoqq7hcEvre2t6Z5175zAraPObU+m34fbHf2ZO8NmKiUGT6kR9Ur+Pxl69+b99tm8O1L60W9+CgTZ4X8ltY2oco+LoVSlYzKT5CI4lTLRFN0qZIo9Rtu3neh/njxhtvdJFVI71IWjfTTDO5fQrHW3s/OaJCSpjo77/8TZ0fDryAM19rPOg6yHNOQmgrApUuZsECEbvRIzDJKKgTr073VrXXRfOF3OILPgugJNQtOPEFICcSNgCZuPIQav0O1JY/f+2115wTIBFYEtS+cOr3OSH8zo6F+WEzXnXVVdPK10PNazd99zVTefCpNmBf4+NrUexGrHtJGw6PUS5ASeIGFZJ6rp7n/01/h0pgKB5Hu0B+IYRd03gsC7T95Cc/ceYWhQFXuda74WPdg5+TqnDjS5d1VS3ws9ar+kQiROot5bEOe6FbHe+NQKWPWdOJEIfaffbZx5mCrHq4ajsvC8GejnxtgxaKTpDWN4LvAAPYiMlP8vrrr1du51U/ST5HsT5STeNM2/RLfgTkt6FwmX/qsif9bmhh5zsvx0nL975QEB8KzOj5vOPAiQ8OTtsqc68+dTOWoYSSD5CyBMVQz5GvEyYp1rUyM/fbn7r8jnGTZHCvvfZyXa4LUMEkjR+LqieHRm97MLBrgH7i/4RpV0n3qgZUodHO708EKn3MkE5/MB827Isuumg8b+0qF7sEmgAI75gRqOHzyCOPpBVrtSlZIEO/cVKdYoopXBI1rqqBl/pH4jDU8TigNX1hS8jzTk2jZZdd1oUr64RvQUq3tBAdpVUY1FzmmxLIAYHPAy/ywfhCTxs3/yfMn8RvJIAjr0evoGs4oJJFGwtgJDT8NqAHwBwA9Ytf/KI2AruPLazjJ9DjV7/6VULG2qoj/HoZSx2AigXKWi+Y23Ab4ECYB9/3QrO63huBSh8zp5MhjIf/Bqd81KZ2Y64aqNjTLN7vqBlJlU9OCIQDJis50IkEOKkSz7/wwgs7rQVjo52qbb30ATsuxfrIblqnU18f7DUeGEGAHnDAAS73iMCn3QC7fYbVpFmQ0e3v/ft84c/c4AjJi7DX888/PwVX+i3zCEiBFznBAwg0n+pTv/3R7zRO3gFPOF1Tr6cb8xJ9gs4C6IP2JfTfW0DMQYaQ/7pokkIHKuJrH6xcffXVqU+QDoFVyovQeZT+RaDSxyzpRKqfIvRxRrMbbren3D4eP+JPeLYVRJhJcJiz3vP4oKA5IX6fTKGUByBcdMMNN3SaF065viAa8cE53WAFjT7jYLfVVls558a8BFpO3S2kGc2htB4IdE76nMKsSlk+HbrfvvsdA3gSYXDqqaemXw26QVpzDsDE8hiFB3HKpnAk2jnykZCXhIgy/vfBBx90hPgPpekYjsD+OsM8yKHhxz/+sXsGmaQJVcUh2YI8y2Nqn5BwfDVIJNYGHmPc/j5BXSa0xPrO56tCmL3PRknGp/pRvId4+SDl008/dSBeaQfkRlClvAiRbn6fIlDpY5b8TQwBgI2XSqX6blCnwD661fETK+hYLEQpYROlxsf888/v8hKQI4Wokp122ik56qijXKQDi1/CS21o0xq0T938XiBQQos+oJYmrTzCxgrpbtqr6z3Wpi2tFomsRo8enZY0yNKuWOCgsWMyIqHajjvumCywwAJu7lHxC1j3SyPxuviE55x++unJJpts4pK54T8w22yzJUsvvbSbP7R1ABZqSymb8CCCUM9n08f8itYQjQhgG1A37bTTujwbhN9i+pRvijWJitcBwPgCkVPEmsgGBXL90ras3/lzeO+99yYrrLBCqk0VPw1qJixiPGTRZt9l3nnvB+gW0S/bpoAK9KMcAwdDig9q7QmoFN2PurcfgUpOM0jdCTIlsgFbdWpOzffcjD0pSRiwGdNPMiGifmTB4E9AJtrf/OY3Haeonh+Y0w9YuHJqlJAg1wD5RFjobbHp2vnTBvzb3/7WVSImUkAbna9dsYKH0xvzjFaDqAi0HYQD8w6YkGmv36mzoNxuyIBi+njttde6F86yVOt+//33HQgYFCAJOOv5JCQEfOOYqzFqnNNMM43jby4JBf+d7zBboXlR5Vpr3u2XPnX4neUfPrPGAMNov/Qd9ML8G9qpn34RyMC+xnuIYMpqTKilhmYbHrMAMESAFRrvRqCS04ygcsb8Q+0MKyxyar6nZgRMrFAfbpPRhmSFY08PzPFmLVr5xRBZRThyGx3PLB8JtAE8cCgGhNj5siG3OBtfeOGFyQ477OB8QbISZq244orOf2RQjYGApd2Qh+I1H3wNwjaWx9GWADIsEFOtKlKxYzZEmAngWK0dn/HJWGmlldzatRqpQWkzyPjK/K0FJHzGnweNFBpirUdpocrs10jPsuC46j13qL7aPRiNIoBdQN3SNjQQOBLty/4+ApUcKK5FAmKmZD3oXptiDs333EQWUNEG7J9GQ1vs6o+EBE6kaKrs/6s2q/U8IQP+wJoicIBGQ4Kpw/IY9AG8UFqAWlQUabOCW2AFHwzoedddd7nor0GykEpzKCGmdWABgTZgf/4GBQFWm8Nn/CoobiiAIo0Kph8K3OGIjWbHakzUB9Tx1FbisJFlFhpw+oL/uebRapGos4OpUJf2lJAGI8Bp8ywNyld5j097FUU3MU/Bf76vVIiaoLzpMGh7EagMSsH/+b0WOlkVscFff/3141VaLRsxW8FgwUjW//3/ld1XOwUWUKHS56Rsa6200flMY9YmjKMoJiA0CVyYcPAvwteI3DdZGhSE9Yknnpjgg6BoLwss+lkG9iRuecxuxFmgJQ+7vE6jEqAff/xxqj0SSPHpgAM5+VEw8xAJx0XoN/+31ZF9sNwPberyG1/LJaEJPclKfd9997mh+MI0BOCivcIX/FXTXvunaEuoPgdYNFVZa2bQdVj1eMt4fgQqOVFZQgThwWaIPV4L3Kr/ygIBdrHYZ2qD8fth/19WH7NID60w++Drg8mHGjASdqH0MSeW6WjG5xHxE35EAGCZWPgREVk/+MEPnGYE50+it1RE0hfShJqTXRgNCu3kfflzoo3Y5zn73DyEnJ7jq9bRoAigSKukv0Ub6lcJsOAzoHxBEnw+cM+bZiG1Z+fCnxeKr3JQANhaYOhrYasaj93jtEdU1Rc91/Kj1jDaTxXd1P9C7HvVtBvu+RGo5DQ7QsW8o37HAVRMa0t6h6aazGn4uTWj0zYh34Qjc/KtEjjlNrARGrJaEwkFohoWXXRRF+3EJd4BxBFdQ0QNTqTWgVTCGCH9wx/+MLnttttS/4yyxlLWc+xJGtqQL0XghBBoBC3qdqrpZpnB0D4R+QYYFG1Fe2vOKms8IT2HNYeZAn8o8t5wyQ/KOiO3YW12Oy++5hrasIYpFfH2228H6ezb7diqvi8ClZxmwJ7GcNzjxEbRKQmYrJNmTo9uVDPQkRMc9W2UJbMNm6FVwUvNjoBAwJKEiwtNCsKXEFycZH3tCX8DXHDa4z40U+I/baJNYRZLL32GPuRNIdJH4A5QR+4YfJ3I65JlFltyySWdah5Q56vtRa+2qefFg5gKV199dZciwPrv5GG+awovahy++RMN5hlnnOHWovWjadq4yxhPBCo5UdnaS2ny4Ycfdhku5axoVYI5PbKxzZCQbMyYMWkYXxu0UL7Z4Xe/+12y5pprujwgo0aNctoRaLLYYoulwlZAZcIJJ0zmnXdeZwrCYZTsr76AbSJQsVooCVb8mjCFkZHWjpnwezQnABaZyXyTEPleyDJN+L5fuNA3kTR28f17YNq3qEUD3+FwbOuHNY2f8phP8aN458UXX3RV3okqs6azPJ7VtjYiUMlpxn1BQ7MkIuJEYk+1bdAODEJSqiKvttpqLmupPTUP0mYdfmtPY/SX0z2aAYAKgGS66abL1AagJeCFAzdCxee1pvpb2PUmEIGg4BSr7L1ZvhQAFnwGMPmQ+G4oDQvqenLBZPn1tAU4i67UP/rmN7+ZIHh9TVbcz/6zu9i1Rj4a/MjwDePyHczrsCeF1McIVHKaDXvi0kbGAqf4FOrnqFEZn9D+pscd1CFigXPJXJbTFAXdjPhHvIN/jp+8zApVNCj77bef0xKQ9ZUcIKKZTnRq074HTYQeOpflkGsBhBWgvr8JEVL77ruvc0SG34bSsBDKzYkYM5KihLKe20O3a3Or1QAwZrR18Jscu9vuw5M1kZY38Jci27fqJlkfxtowQUAdjUClwMlgMVPc79JLL02FbjyB/IfgAiJSM2MuI9IHe3gWiClwqipv2m5yhMrONNNM4zmAol0hBT5CFg2KKhTffvvtTgslk08bTvy9TJi0L9CYrLkbbLBBQkE7LqLziCwjOR4p/30Ny8QTT+ySwaFhoXo3J+U2XBao8JnQWhyUWaNam23LZzTSvGvdsQ7RpovHRvpd/H5kCkSgMjKN+r4DxiVcGQc/vL7bchrrlmBWNc/JAy0CKf2hkyrdtsUWLt7AIZSaTDbMVpoVEprhQ0HmWWlPoA+/IYcKfgTx5DY+94mH0Abgo0IyM5tEj1+QAZn8KiTLU7kB68OCHxBaBaU/75bH63qf1fBJezJu3DiXBM73/6nrGPPut4Abe5iK1MaDaT5UjkAlHzpmtiKEja0bxlWtmgIfWaum7ant4osvdtWbUbHzf1v+vA0aAgkG6vlQYZjT/ZRTTtlxwge8bLvtti7zsbRREriYGSkmh49PzHTZuQwkQB544AFX44jqyNafwNILzQHVw8lka7P7zjDDDAmaq7bQNos+8CaHCQBdjPrJBsRoU9C+KblbBCr5iKQIVPKh45BAhQXPKYzwRzmjFfjIWjUtAEJmVUw+OB5bNX1bHNCsmQvtCGHZ5OIh+gkfChwZSVIGUMHBFt8KQo/9kMfvfve77sQbNXedywB6kB4fbQkh3xbkWRpqHvg12ZApqPitb33L0Rw/IOamLYLHj6jSWiS/EdWoFclSqw2nhM6ef/75CYcuHcJKeGQrHhGBSoHTLKHLI6jgiuqY+ipS2xf46Myms5wrrZOv79CZZ/90EtVGL6GAoCB5Gbk/rErZnuiqFA7WlFKUQ/RQ7aKBI/oJxzzCjjHtHHPMMcl5553nhKYFcvTznXfeSVZZZRXnR8Bl223Lxml52PIQuSy22WYb5/8kWlhQ7PObeI5cSNAb8FjkpefZebJjsWu3yH6obZ8e+httHuHfrFntY74/WVnrVQcdO59l0EZry58TtJlUeVdV8jZogsuidwQqBVLa3xDHjh2bhqtV4Uvgb3zaqG2USFGqbdq1uSn0mUKO66yzjhOy/iZd4NR03bRO33pXluGuG+jixl42djQD1GHB30LzZ9XwhDWTLE9l79G8+LTvoku1vEX87ZsNyUlDKniFimYJkKq1UFlAyddqVA029XwckqkdhXlDQtvPsVIGA1ma2UNh0c/W3q2DgoIBiBBj/RV1oCl6XCG3H4FKgbOjha1NEIdaNAc4Q4qZiwIGQw1LC9q+234OUk13OFJaoarPCFHMFTg3Wg1AgVPSc9O+VqLs+fI77INfy0eiK1EtOD7CdwJWVfe7Z8L38QOtM1/TROQdWgC0maJXH80X+hO7PjRnVhAXAZB7GZDVmvC7I4880mVIlt+dz4e9tN3PveoPe4ieXdTe5ffPar8EJp9++unkwAMPTOsi2T21n/HF33RSIAKVAjnC5hrQJooamTwOVoj0cqIepLtZph8BBLv4ilBZqn2rVfnJT37i0sMTIlq2artbOmpD1P1lzdVIQNMXxlaQEEaLYy2OfVZzV8S8dkvHsu6zp10+42tCPpSXXnop9U3xs86W1beRgLwVuJbPfJBQRX/pm9VUoaVaccUVU5OYf/Apuo/ScNo9tmwwrj2LPFn4MqFpsgeJqrV0Rc9Bme1HoFIgtf3Fy0LC5wAVIWpTvudEUJbw43mcgDAL4AzHC1OCFrg1AeVJFgtCtOFRDwlHUZtjJkQBItoQjUTJe0xVVV5WaFmwYj/jv0KuFRLn2fvL4rOq6CPhJYGPeYxTLjktJGRDrbmiNUKfia7B8f6hhx5KyKmDzwNXlfMn2sqJm7/J8LvZZpuNp1Upq58C3npeWUBFcyUNDk7XJ510kpsjX1PehsNBGes9ApUCqSygIsYW0xKufMoppzg/gzJVujyfJERkmKR+hxKHAVak4SmCHPaUK6CCcyiRPgq1DUGAWFW7P2eUaecESR6TKi/bR2uW8jdpfH5WXnnlFFjppFdl34t+tj1l86znnnvOJWsjbb4EvfX7KLo/Q7U/FHh84oknHKgiPJ3kal/72teSLbbYwplYMOXhCGyvsrWQ9uBFP3B+Zw3jqGyFdBF0tZpNq6ng4DdUmZKi6KO1BC8BIjlwKQOtDRpow5orYq6z2oxApUBKZ6n++B/VgUmvTDRHmSclnk144eSTT57m5wC0sOHYjSBvkvgbMyYJTmLW8SyERW1PQ3JAhRaPPfaYqw1DzR3K3pd1YsyaB3/zVV+y+nTccce5TZTw+LJOm3nzTi/tCaiIFhtvvHFy1llnjddE1rrs5TmD3GuFveYELQVABIdfEstl1R+abbbZktGjRzvwpT3DB9OD9Kub32bxGFofAPEvf/nL1LRWhBbBHnagGxeaJxIdYuakHwJLvjN13uvV7pVnnnlmmlfG38vzfm43c9TUeyJQKXlmJZAffPDB5Nhjj+0oeqYFUNRGSrtoc2accUYndMnLgTMrNtaigYpME5AbPx02GIXYasMuYoPrZXp9bQX9whZPmXsJj5133rlSoNLteJhPTpvkvFDa86ZvnAIq0Oiee+5x0U8ym3RLt6Lvs6Bda+KSSy5JZp111mT66ad3OXMIowbI41vjgxa+Z165pB2S4C6671nt82wSNR599NEdACrPvmhepY3lHW002if2MV5on8guzFUGUKFP+NiR6ZhioE1fW3nOZz9tRaDSD9UG+I0WG8yNDwFl6e2p2ArLAR6T+VMBlZlnntktbk5v+MuUBVR4PpvJN77xDWeDtypUC2TyHne37WXRnkR9k046aXrSJaFaHS4JxMsvv9wJEk6fbbiYQ073gBSdskMatw9UyK8033zzuRD9c88912lZyd1CBWgKTaJ5/cpXvtIBWIiSk29Z1Zoy6I3AptaU/LfyFtrSQmmsvKMpo6I4+5jAHA6tH374YUctIq3pPHmA8RFBxv6tQ0CVYDHPsYXaVgQqJc+MTgcwNmnPORVwardalKK0G1UCFY0JHw8S3/G3/HNsDoa8N7lepld90qaD7XuWWWZxWUlJZ48GiuJ1dbjET/gAbb311i5bZhsuxk1SPEoNcFWtpfNpbrUDmOTQniy88MLJM888k/bX7gU4v1MhG42LBDKVs0lxoLaqXDOi74knnugqxcvfLU9e88cJgMMUZkGKNMRoOKCrBYRF0AcQfPzxxzutcBFgKE/6NaGtCFRKnkVtQvIYP+OMM1JntKIXVxVAxW66hO9JdW03bHtSKmJT6WaKRXv1hVMttu9DDz00ufrqq5NRo0a5jbFOGhUBLjb2TTfd1BXIlPDWvFRF727mpJt7JCg1DjR2ONByyi8K8HfTr6HusXz2xhtvJPPPP7+LntG8+EJP48KXDM2ehDPAJhSgQp8BTuutt54zuRXBY5pn/MWWW265FLTJ9CMQN/XUUyeksUfjIfoMMl/8VmtFfcCcCBh+4YUX0qSLoQHiQccc2u8jUCl5RrQRKRSXPA9E3+BgyiUTSBGqxDKAijYHH3wQ3svJnoJmdiOz5K9SaEq9TH+wf6NGxnyAyeT6669PpppqKrc51g2oMC5Me3vvvbeLNBN/if+K4LMylpQF9TIhcponmg2VvDUXlNGfbp+hvvLOIYXkfDjXSyD677qfFP5Wq0JIrMzIVa4b+cnQb/JD2ZpI1pQ6aB95DoeHNdZYw2k2qSQu0Cawgimb/88111zJNddck/rwDPJs8Zk9WN14443OTIe2y/rDdMsD8b7eKRCBSu80G+gXWrwSGPzNpoP3OItBmRaLECBlAxUbOUM4MsndlB20atu6P4l2IwJMUb34/vvvd7ehURFQqZPpR8KasREtwokXcyN/C6iUlc1zoEWT8WMLiCXM7777bucr8emnnwZ70rWCDz4j8m2otaC9gt9woFl00UVTTQJj1TxWeZq3WXQJA+cwIhDl+5b0ywMaJ1okTDsEAOA7hu+OQAraJhz00YBSvZj8TACJQX3f7HzJ/wnTNVnGtV+Htpf1S+eQfxeBSsmzk3USxKZKrgQc6IpE6GUBFas14vMnn3zi8i3IcVibxyAnnSKmjf6QChufgR/+8IduLrg4ndVRo2IFHZ9RV7PRo3nQabxKITfIHPqaO7RGhI7b0gFS2Q/ynCJ+KwGOFlVzkTUPVvsCUFliiSVSLQJmIy7fVFREf4dr02rouI9oRrRE7777bkeV6kHWuuiFvxXaJ9IpYH5hvtGuAFamnXZa5+fDQUgJLVXnapBnW6DC+DDT4aBu/es0T2XTvk3Pi0Cl5Nm2J3erGiXrKVk0uQY9BQw1pDKAiq8xoi+YHPbZZ5+OE06IApJNEEC15pprpkX9oFldgYo1I/KZUgVrr722q+RttSolL4FcHuebFVDHY3bAVGeFZ2h8JvAkjelw82CBCoJf0T8LLrigA/+WBrkQtY9GrFaBMWE2JXcPQF9CftD9TDTTXPIOIEF7A1DBJEtoNz5wFpxajWIfQ3M/0X4trRYaGxLvZe3j/T4j/m5kCkSgMjKNcr3DX7xaTHiPEyqMN7nuyfXB/150t99+e+KHJ8vxLK9N3WqNKH2O8CcVuK9Nynt8g7THCYnsswgBHPasAKkrULGqd50A0TjgfyN19SCnzUHoPehv7UmXatIkd3vggQfSeWO8nKhDu6zQ1RiGKh1h9wEOMqxbhDL7BFrYEICKPVhJA4k/DYAYLZDGOyif2flm3Pi8wcfSqABU0DL59+Wxp2kMHLiss7CvVQmN15rUnwhUSp7NrIWkkxMRC2SflHNdEV0jTTdOecqjQvbSojZ0xoqpgQWuy57yB928+qWP3TzVB1TW5LNAkNvNl891BCr025p+dAKkxhJ5bHAG/PGPf+xyddx11121fTEGTrkk4hMfC2T2yx9l/C6LB/3nWqCCT8bEE0/swMrzzz+fao2sBqGMfmc9wx8LWhX5ijA/hPnj7zXICxDK73nnRZvwsTQqROXhlzLIM4b7LX435LTBVOevrTzAUFVzV5fnRqASwEzp5EtXCK0j1wiRC0W89t9//2SaaaZxCxwveWqKFPEc2iTPAGGxqKkl/EMAKqK3BDlOgEQTbLLJJi7LpDVf1Rmo+KytkzvAZNlll3Un87q/cJwkc7D8nwQ8qwLBeW0n1rTA+llyySXd4YKDBfNoa2OFOFa0KWgn2V8wyWGm2Wqrrfp+6fe886IGEg7vAio406LFIS/NIM/J+q2eRzK+orTdefFNU9uJQCWAmZVjI4uAxbD00ku7BZ73Cyc3BNQkk0ySZlpFi4BphmcRFcI9vAZ59oYbbujaYuNQFIY1pVTtfCYhoPexY8e6iIqXXnqpQ5uiE3pdNSo+a4vuRDEtv/zyTujV+QUQJnX7Kqus4k7ZVfNVnluJNZOeffbZyWSTTebC5ZXGQN+HGHFC3/AXoQYQWogTTjjBvVhneb0oP7L44ounUT8kZCQ0ncRzeT1D7dAm41CkVRERmXnyThPbikAlgFnVpoNgJLETfiSkmM/7hSBGY4M9F1s3pxEqtaJK5lkkMOIeXoM8m02Ktoig4TRFym8b6VN1pIIAClN/6623JnPPPXdy1VVXdaT0t1qupgAVxo2vEInsEH74QyHgMXvV8UX/eREuio9KaHV9Bt1aJPCJ9uHwIv81m8k5xPByHJop20ANI0LF+TvvF6ny0arIR4V0+o888ojL8p33s2iTqvNoH0maGIK5bVDeqtvvI1AJYMakuiVVNqfEvC+rDqc2BWnh5aNy5JFHdhRGzPvZAB6iFQA/OvFaoJD387ptj76wiZLFlCgF7OragPxogVtuuSUNT8aHqE6XNQswLkx/gEcuq4EI0XzQLZ0///xzV3mYhGNNuDQXgHvMDhwsyLfCxXfKD6Jka6HNHb4imFJZU7p8P5ZB/yYAADOP8qgQniyN6KBtZ/2ecXCY4aA3lPNzE3gv1DFEoFLyzEh7YhMlITAIP9x1110TNt08ELsVutbnwkb9qHoyeQmkQs7DMcyGVdIumXc5YeGpr801j+cMMnXk3TjkkEOShRZayBUWQ9NA5susFwXQpphiCqeFwobNPdzPC/+W0ASFBSFWe0Weia9+9auZ+Wys423Vc+PPq9aMFSB+f2+++Wbnq/Lmm292gLDQxjIUz/qOzzhtUmV89tlnd87oGofuk7CsWjtp1zrzQ+gufmkkePT3oDwBBPskGhVlp8XvDrO5wFyezxLt0ayQi4jyDFpjdt4G2Y/ib4enQAQqJXOITutKRiSAgPMpiJ0rD7uzBQTSYPDsRx991GlUELo402Lj5+Rjgcogm7u1rcvc88477ySLLLKIiyzxtRUlkz99HBFWX/rSlxIKvJEWn9MZheyyXiuuuKJLzQ3NuJ97uJ8X6u085itvOlg68xmQyDhxPhXv+ULGAtq8+zNIe0MBFcvjhOsiIAGfEiIykQzy7LJ+6wN4okxwFj3ppJM61qbWlObXasXK6qt9jr/PEOKP1hGgpcNYEeuDyEg0g6rxg0YFE3bel93PaJvwZHLEsGfaOYh+K3lTvrO9CFSKpe94rVvG1yZDeXTCeFVFeVCmFzChHbQlOIGRh4HwOzYS+agAVEg7re9QL2PnzwOoWHBEP3BIoyAh7eehMRp02vCjmXPOOdONThvecO+2Wqvuw5RStbDIogV9slmO0aShcbDF+tRv/IkII1WYcughy3fccUfCmhGPAbz4jBDBWZzcPVwSlIPyShm/tydzNHyAY6L/yK9k17MFBiHwne035Rlwosc3zfa5iPUuoKI1WRRQEY0Ftgjv51CppIka/yB7Zhn8VfdnRKBS8gz6p0NsrYcddphjfLu5DmJOsEgfYIDDLCp/Nj/8RcjHgKBlkZNThe9wsPz617+e4KQ2yOVvqlrogDCiFlBniwaDPGfQ35Ik7PDDD3fF+kZ6ERWlyrWYinQ/ZQ/wXyliIx50fAIqvGOeIhILE4IPlFHVo2U5+eSTHZjktKh3Pof0QrtAf4jGIE8HPkaMR4AErQrAkZwqEvB1ESBa74RZf+1rX3OOmxwy7HrSuhZYEY8MslfkwWfqI7leqMPDZQ8qRQCqsoCKb76C9mhu0ESTqt/u54PSMv5+aApEoFIBd1j7KVoO7J5W7a4Nqd+u2U2C0yanaVsaPUtrgHbh9NNPdyaCQS6Nw6p9JSzwI6AfmF2q3FwFCNns7Au7t//ie9TwlI+HbhQl5B7+zzv00pgHoVvev7VgEAdAwBYRC755h2KYvPCRotAaZjq98zmkF31U/+jzZZddNl4RT/pOqDk8HwIg7mVecTynfMMuu+ySJn0UKJHJRzlUGBv3V+0jpXWMVo50BPhtaf/y/fB6ocVI95YFVOiHXTM4MvOi8jWavTx9+0Yac5u/j0Cl5NkXiOCd5GLY1DFDaEHYhdFv1ywQUhuo9cmZYkujS6sy+eSTu4UnB71BQIR/Yrd9wa5LUjVOXv5JRaeuQZ7dL71G+h0mMQEVhIh/FWGDH6lPQ31v6c3nX/7yl074IdTFe5pnZUJGna0rRPpnjZUQVPjoF7/4RUc9Fu4lNwxaCUCk1XZlrYt+6TzI77JO4ZircNRGuwX44LL3+esKjSBmW35X1pxZ+llNFVph+oLTuT0k+f0fhGb+by1QUVHCInxUeK7Wt927WTvs3dLq1UVzl+cclNlWBCplUvvf6FynI8wG5LOwYXx5dMduznYBUflT9UIEWDBpIHxV76cooatFjomLRE2cwPQ/3yEvDxrk1QZ9JIJBQAWHVF8wlCUohhuT+mCFCaYQ7OkIQExv9mTId2y0AFgLUkLfcO04b7jhhvEANt8jxPFVueKKK9zQrB+B1l5e/NFPO1ZLwu/REjFHhMpTQR1fDwAI/kT2xXeE4OJPhPkRcx4gs6w5syDE+tEB5ElnT1/s3tMPbbr9DdpMnGlteLKifrpto9v7/PUts+qFF16Y8lgIe0C346njfRGolDxr2lRQYyMo2FTzvnSSsZs0/8MMRN4UsjhqgRMpwUap3xQFVKzfDHZsImawwVshEuJip39U5gWoQDNOjmUJhm75wtei6HcINXyPlChMApL7cbBWtW7uVxuhjW04GiAY4WdMIOJ1CVBMP/gTffDBBx0alxA0d+J5aI7Ga/fdd3dmRXzF4C8EMMBl880373gRjrvRRhu55G9klybvkuauW14Z9D5LP/pPmD9mRdaIHdegzxnp98w9NFLCN8KTCb8v49Ja+fWvf+3WEHt5iHtXGbQo6xkRqJRF6X8/R4uZonCkMi9qo7Gbht1cUJmT4IyNEVs+mg1t8lbg5UkWncT0HIQHmzK+HwJIRTjc5TEG+kc/0TxBMxJwhbYpCVxYXxk+EyaqZHYWECJc+E7VZi2wLYof85iLrDZwPiWdukCvBdpEoGBKsTxm6VBUn4Zr1wJCzAd77rlnylvdRJ7pnnnmmcf5SJW5buyeIppi7gFAKUdSWf0BqFDqQwcuzNdEG5Vx2XWGNgkHb/xW4lUcBSJQKY62mS2zwElKRaSPHOGKOMX6AMD+zQkAcw+qc13SeBShuhVQsSd6wqSJMlK4sp5f8nSM+Dj6hXkEzQT1cThBhQZUrDlEn9m0F1544dTEZsHI5Zdfnpx22mkdtnf9zm7CIxKnwhvEU5iw8Emhmq7lM7qGKWD++edPsyJbx8eq5lDzgJ/QxRdf7LQj8FW3L5zRVaeJthSaXcZU+NFG77//vuu/wpHL1KgQcUM04zLLLONe0ESZaYumhcYJPTCZA4Z14Cv62W1tPwKVgmfeChEeRdgkCFwFroo6gdiTm/0sUIRmRVfWvXmTxQIh2kZtSuFDIlLYbEMGKkTLIAjxDZBvTd70GaQ9Xx2PoyEmPfxTRFtFYOB8Sviuddi0zy6KHwcZX9Zv4Vk5BTMn5Bxh3FZjgu8XQoRILQSbD8YtWPGBSxGA3a43hBzJFzmRw1fdvgDN3CvflKJMtVk0F2/wjgaB3E8cuLK0t3nPt98ec/vkk0+6yBte0AQ/rDIu8YbqLNEParQVceAsYzx1eEYEKgXOkhUgYmIKZ1GJU3keitwQCxzawE0zbvwIqHyL82BdTvIDD7yABmzoKnQF/GFasxEJbKqAFsCLNGkhOJYOQg5pUBCamCDw2RAw09p77733nGMtY9b9AixWwIoWWaB+kD4W/duyNENWWwXdAFloMfCx88FSWX0qmrZDtS8esVpKzI8qGxD3svxnJgKV/GmatuhHs2BHJ8kYTl9icus9X2BXgmyaNNtUvf3e975Xu5wXIRFUghde4qRNuYJx48a5LlphTAVYQnrRLnCVeRovgl5WC4eGbsyYMQnmCKua57loMMmKrMgna4JU9l4LYvII0y9ivFW2CU1FKw5Z+KWIx7K0UVX2tehn+wCX8WPCxrkXTbUFwk0HbUXTWu1HoFIgpbW4xayk+Ca7pnU8q1Oa7zxJpVMJCe/ImKuU6Hk+oy1taWOEl8gqSxSGSiGIzjjQfv/733cRQL6pqI50sqYfjYeqvSQtFAgTEPvkk0+SddZZx2VFtiBG69Oq7AVYrGaljvTJu886WPGO5orQaAHevJ8VenuihQUk9Jm6X6Sb0AEhVlnObyYjUMmPluO1ZJE3SBtHTBxprRpVnwvsRpBNS0igtse+SxQKJ7V49U4BCVpMaFTbxYlUglzfAQhRT2Pbtzb2up74fPMNoIQ1RgVyhdvbRF3XX399svLKK6ehpFp3CBMODjgYc5AgXFh5jaxqv/dZadYvxDOYE0kgCK24srQpdeWpbmfMgl2rlSQKiyg7u8d322a8b3gKRKBSIIdYhibZGgmChLYtKm+jE5YFaITJElVz6623prOhza7pm16/7CfBIX7CN4McHDiO6n/yu0C4HHHEEQmmH8t/dTb92PVjeYmCitRhIRpD6493skB/61vfcv5hmBzt7wEq5PVZaqmlXCI1TEWsVRxXoRn0A1C3jRftGtQeRbQYYNDS0PJwG/wzfI2K1iLvFJQkCg0NpqWfvaffNd/m30WgUuDsy6yD3ZxQOjZLXW0XxD5Qwyyx1lprJYSbSpiy6ZUZflkgK+TStL9BWqBB5MEcc8zhTnNWk8eDr7nmGmcSyTL51Fn42s3fjgNflQceeGC8dO44gBLeS4I4/Va0euKJJ9KszeQqISniYostlpZ8IMstwrktPmUW5InPSGuw2mqruaJ8Aodt1KhYTZJdUwJz+NwBWPz1an2qctkQWtRIBCoFTrac9kDYhCHWWSjkTSbrHwCd2ATXWGMNJ1QlRPi/ojjyfn4d29PGZ6N8oCM+GDglowngO+sgSnI9HLgBMG25ACIkUsOUaLWaOLNjZtx3333docGCFcw9JPNTaQk/+RrgB81LW/wOfB5DQ0AoMtoqtEs2SqotfDXSOMVPmF7RYCok3pop2wJ0R6JVr99HoNIrxXq8n8yZbIxC4W0082SRTCcynUh4B8xRB4iQRwlle3rpkfSNvD3rpEvyPMwWqnwtTR4gT2G7baCj5RnCsFXrR+ANGlDdl7BaTEQ6OPzqV79y4csUzFSmUxXs5H2GGWZI8+e05VSscUqbQloFqiPjw8MlHouHr39tM9rPxGuYyHQ4tWs20qu/bTkClf7o1tWvCBXlJIaTIwza1gifoYjlC13MPqQ95zTC1QZ7d1eMZG6yGgI+ozGhUjBZTu2GCb9R0A419B/+8IdSU633Oqa87peWjvYY83bbbZf8/Oc/Hy9/CpXCSXqHueyqq65yicswm0088cSudozqxwBaJpxwQqdpQaNg+TWvPofajk2tgCYK0zV00/9tiHeoYyizX9rfpXEjfw9r78MPP0w1d9K4lNmvpjwrApWcZtJ3nKLZyy67zKnjddJri9q4W5L6fgL8jpMbdUyoHiuwYk8hbT+R2JMb5gpU8eRvwJQh7ZQAC46jZEDmqrPj7HD85PupaJzQgkifQw89dDzQi1YFDRTRKzPOOKOr4aQX4MQClemmm845ebdtDVvTDuPHtIhTMZc1LXa71ttwn7RQ2qMIVyYk3u5jUaPeHydEoNIf3Tp+pU3MOk/hc4GdHEQtwdF2IZtFaito+B6tyl577eVOvERu+KeQqGX5F+jgeu6555KVVlrJgTuBEQlqkgoipBV90MTTnL/uJBAkMABv0mjyHSZFzEH777+/M+f4fihoTwhhxsSh70gUp5pc1lyZw7YRdBPiIxLpAYT9iLy4l2VPn4AI9MFMdsghhzj/uzZp44pg7AhUcqCqrxnA2YzEW5zo7OZpT7w5PLaRTUBL1KYLLLBAhx+BBmv9EBpJgBEGJSGMPwpAGP8nAReZPhDQhNmilbLguWnCxdcgaa1Z7RGOjWTjxQcFR9ppp512PA0KAIWkg/vss4+L1qB2EPfxf4CNFTJtAcrSqBAtRlg3/k7x6p0CaDRJ8skBrC280zuVRv5FBCoj02jEO6wwgBnJvYDdW5kbxaBtF7IjEvJ/btCJ5Mgjj3SqebQq8foPBSScyTBLPR+0Kr5mAYB8zDHHjBce2TQ6CniJJtJ46P9k5yWKjCrSs802mwMoiuqx0T2bbbZZQkI8TGniP4QzpQjQwnBZbUrTAF8WXzBGSg4QjqzK1G0Yd95rhEMrWhU0nFwx6qc/Ckeg0h/dOn5lgQonD4QsG58Y099Qc3hkY5uQQMAeTgl5RW40dsA9Dgz64KSNOl6ZZq3PAN/hREqVZJ2KrSDv8XG1uN2OD/oALojqIZx2pplmGk+DAmBZcsklk9133z3ZaKONkoMPPjgdp/L2AABxUNbatj4bbfAzgA4nnHCCy6Ztw5FrwRABdRL+IX8PKQKUhycCvt4nKAKV3mk2HkjRiYt3wpGJWlHmRuvc14YNbkByuhOtoqNuvvlm5/SolOhN9LPohV4SmjhpE+lDWC2X6AXtCEcmq6oAnwUrVfDfUJtynpu12iKF+S233OK0mQsuuOB4PigAFJK4YTKDt9CgkF9m/vnnTx577LGUljr1KhutpWFTnZJ9PkQrTNVp/Cx8TVUvPJvHvZpfu/4t/4S6L2i9IgvQcGJWHIp/8lwPedA8tDYiUOljRuwJzpp1UDVzOiMlvAUvVuPSx+Ny+4l19NLiznLyqnLRqD8SFptuumny7W9/u0MYlylwh6NTbhOT0ZDlGd9Bj8R4F1xwQcpjmi/CkTFZcNl5laAtsr+2bfVd/bAaxbycCu0zSHhH7RkioOaaa65MgLLooos6wXvuueeOp34n5wpOtGij5AOk9WvnX6CwLDqW9Zys/YlyDNCFq2pwluUj5JvTy9wTup0XC6DwFwNAU49K68KujxD73+04y7gvApU+qGyzNlohQFVREv2ULRi6HYJ/MrQ5EWxp+xCAivrw9NNPJ0sssUSa9twKkm7HPch9vkYMOpVxaZz2nWeffPLJzlyB/4Av9NkI8SewILmMvvrPsDk2fMBleXCQvumUTx6Zgw46KAGI+FE8/A1wof4RaxPfHXxWVJhRB44//vGPLtHg+eefP56/T5VrYRD6dPtbq3kTr2OqwLkYoVq1NkW8rLnSevD5SqAgtPlSP3lHNqANFeDVWKoGgt3ySpX3RaDSB/UlIBAcEvCE8aFNUYKpsgRaL933hZ8vNHBcrTrXi9Wo8BlveTQqhCsr6VaZDmn+aa6sZ9sNTn0gcSDhyMqNIt8UeACT43e/+900uqDKDdunmdV+ABLk89AL72bdy3NeeumlZM455+wAKeRBWWihhZIdd9wxOeecc1KndgAJ/mP8Rn3SfFI9GUCMf4tdJ4P2MfTfW6DCZwAwTuxESQkk2PmrYjx2rqw2WyUN7GGiSr7Poo3oS7/hLVIvYE7zTbKh9buKeR7umRGo9DEjFtXDcGy8VEdms7Mgpo+mC/2JFSD2BAIAwH5KGB2Lv8pFYzdOCWL8CBDQSnte5gmEZz311FPO1MLr0ksvddlgy7jsfMFjhCID2BTqKDpw8qW8vHx5yqTPUADCmkw0p6+++moybty4NFPzoHwGfaAL4ceK4iFZIBqUK6+8siOHjPr54IMPJmPHjnXf6WTLOyHd6667bkJxTAGpqulYBo/5gA0fJ5K7+SBl0LkaZCxWe0I78D9h56eeeqrz07LAssp++mO0/RYvodWD/6yGSJ8HoVHTfxuBSh8zbO2jCNPXXnvNhaBZVWlZJ+9eum8BFr8jzThVZsmeS/0TVOWky67yskAPGioK45RTTkkII8UfwT/hFbk50QdMKkqtPvXUUyd33HFHKSSyGzBJ3YiCouAe/7flGABP1PvhsrxZSiczHqI+8BXAl2q7OPjibzTFFFMk11577XiJ/PrpqzZ42sdvZ/vtt3fmG5xqJWgtz8MnABQEBXxv6ch3pNTHBIS50Z6E++lbXX5j+YXklJh8NH7Rruy6Pv561t+ASapck8qfpHyAU2nHZG6kz6FclofYxyQTyHFEVFmoACsU+tl+RKDSx6z4p0U2vptuuikVFPq+j6YL/Yk2djJt3nXXXc75kDBN2fYRxlUDlaxTCERBbbrWWmulKam1efmnrbwJCM0AKqLRlFNOmfz4xz/O+zHjtadx8U4V4A022MCBYatx4vNHH33kEpXxbvmy8A4O8wD1GXBFwrB11lknmWSSSVIaslbyAJfiZ07YCFcEmS5LC2su4HsiWsjaC1Dnsj41aKyU4MzOge1vHn2van7surGfEaSEc8Prll6+FraMfttn8jxMdvfdd58DmKusskpHuQMcyC0oDW1uLGgXUAFYA1aUt6cNmrtB+SYClT4oaJEyC4VNj4gfLZjQFouGyKJh0SMoUJezKXOCJAMnpxOKslUNVOx0+GAE0xonqffff3+8jKtF+QTRB5w1lSxsmmmmSX1E+mCdrn9iT1toIDjpWtMO36OtOPPMM52Gwp6M7ebY9QNzvJFwTMJ98QcheoQ5m2yyyVIaEhqcxzXcOhvuO0w7nMpvvPFG1w1La4XlYgq1/7fCO9T13Q1NfZOD/gborbrqqs6smTW+Msds6Y4GDJACSIeXMAGzT7Ee2bfQZmsOuxl/2ffYQ6toCEDBxKgDTyxWO/KsRKAyMo3Gu0MLCedTHD1ByHW46DeaCSJD2JBYMJhURo0a5RY+G4Bs9yGNRydbQNTmm2/uFrlVR/snsDz7LqACkONFanU5s+b5HL8tjZnEdzh5AtIEkAXK4DsAp7L3alPUb4vs33Bto9lgEyYkEzCFo6/ChtHa5QVUBhkf/E8+FZkSLc1YE+uvv77TuPg0Dcm00M/4fS0R40Ejte222zrQW7XQV/8EoDgAAlRIYMh+xSFLdZosUCkTSPVDd/83mNlGjx6d+tjUna/yoMlwbUSg0geFtYgwn3BqrMslFbc2IxY3xcZmnnlmB1QmmmiiYIGK1KZsWqh/sU3rkuq0CL+gKoEK4yOXxde//nWn6RJAZpwAyuOPPz4NRxZPihZVbtz+PFCUjRwm8FgoQAXaAv4Qzn64MqZRtAtkprUaCHs6rsuaHwoAa1x8j88VwAxQXLXA1KEDHvJ9Y6A/dZgAvRwa6gpURGNClamuXHWkZR14OQKVPmaJBYN6m1MIBfSqFAq9dN+aBxQex+mWNOMy/YRYW8c/BRLVscsuu6Sbqh1XL/To5t6qgAp9Q8ADInHytCd7PmOaIAOyLXYmIFq1KtkPF33rrbdSZ+1QgIp4CnOCijdaIAJIwXlZlZOtOa0u6z0LpPA/rX3GgdYI0xxghb+r5h31AZ8ZOaBasIiJSuHodQUqAvLUgqOSN+ujrjzVzR6axz0RqIxARSsk7WkDNEzyLanj68Bo6qsV7KhSVQ8F00+oQMUKajzmiVJSdIIvxPP+Gx8Va/rBrJH3M8SGaheNCTkXAGQ2RT7fk+uC2iG2IKEEkDb6KvlRY5CAIbw8JI2KXQcIaGipta2+o13YZJNNXAgsYDBr7eTNA0W352uHEJiEi5NvRiU/qvZv8uls9yq+o7ifzIh1BSrSjDKe2267zZnfob/VdFvQnIegr3sbEah0AVQkKKSiw75NdlCuEARDL0woAaaF4AMVIkxCuywYlEAh58s3vvENF+nhn+Dz3vCtMy0+KkUAFavypv8I0HnnnTeN5rEOhldddZUDyRaciBfte9XzKF4jCeIyyywTjOnHCkNoBCAk7FV8oxMvQBhnc/mg2RDYvHmsrPasaRCNHWZU8gTpsiahqvjH7lF+H5oAVJQolLlQdWX4j0u5o2IkUOfMR6DSBVCxzpqoI3HmxD9FG15dmYr+y/QjZ9qQgYo9XeEEScFCEnsxDv/kldfGT7s4rMq/Yvrpp3d1ZfJq3wpHqeSpOUM4MoXMLBjhXpyhceB+++230xNYVQJlpOdK4ISmUdHJVeuWg8euu+7qzDz2tIvQIDKORHs4BRcNiPPmKb89Oza0RMcdd5yrjqwkj3YdjTS3VX3fBKAiMCinePxu0OoRkSnfnKKiGKuat0GfG4HKMBTUwrUnKU5ZqOMR6PZ0ok150Akp8/d1AipWq6ITL+Y3Tuok2rObcJ4bPu1SGsGafu6///7cgYpVuV9xxRWuOjJgzPoTcA8p4Rl3HYRK6EDFgtsTTzzRJc3zzSM4ba+wwgoJ9W+krcqTv8psS2PjmexjCvUXGBavFeGUnte+1gSgYvcyfSbpphJJKsllHWVKXvPstxOByjCU9dXxhMpxuiLc0kaaaLMpapKKarcuQMVqtKyAxhGQaAXMICQ8Q9tQxGvMmDFpinbyqKCFInV3Ec8iLwSJ7YhIkSpYY0YzgfMdPioSLiFHDIQOVOwaJjcPid6Uo0cCBNU8TstkvSVEtog5L7tNtHHsY/jf2MOYeMn64hW19/TbblOAimSG9jbqeKFVoWacPRj3S6em/S4ClRE0KjaSgsqr+EZwWdRbtQNav0xZF6CizdQubgkZbLvUdyGjJr4keb8o9CdHULQqk046abLVVlu5BFR5PwvNDWUCAF8419nTPeHJhCNTq8aCNZ2C++WBIn8XOlCRFk4ahNtvv92Fg+NQLhpDH4rIoVUhQijvOS+zPXiZFxph6hrhMCzAa9dYBCpFrop/+TX6a5i/KTOBKVvRTlGj8p95iEBlBKAiEIIdF98A5e/Q/3UKqSNT1QWo2CkSnbXYEeizzTabc6yllgyRGnm+AA4LLLBAmrabyCjMMiSey+s59JsXbeJ3c+yxx7ohW3MWGiMEDM7D1rE2ZP+o0IGKDiHqJ+ZcQCinWmsW4vPWW2+drLzyyg5IFsFnefHScO3Qd3gMjR33qTZZltm0WFHdf+tN0KjID8X3fSTDNMVtkTUhODX3P0v5/zIClS41KqiAKX1OKJlOIXaji0Alf+YcrkWd+q677rpULY85BoGe54s2qcthU+hTATXPZ6kt3rFTIwgRluIzxopGBW0eCe8EYqyAKZf63T0tZKBi1etyXCT5IbWJ5DgrYcHhBMFOPhvmJU/+KrMt+Iv+Y2YA9BKaLMDvRzR1N8Pl39UEoGLXrTSimOOOOuoolzHcguTyKRzmEyNQGQGo2HAxTu8UgFPFTouIQ1aXDjXEOmpUNBb6ThpqTrnUWyoKKNLu9773vdRHZbrppkseeuih3Fez9XPCHIBzncyL0pqQGIooDYSN9S0IlfdCBirWrMZnzDvkE8EPzarlAYhEBHHSFUDMffJLatBqI0kYSIoFv25WyKZEyNQUoCIfKHiPQzAZajkA2UNIUXtaSeyW62MiUBmBnNahlltfeeWVZI899uhQwYesfh9ueHUGKtAcJ0d8RaR5KGJh8xxMfvinoFXBmbaI6sk60TIWhAdp81988cWOjYs/yJiKLbsO+RZCByrWt+yEE05w0VQ+L6Fl2WKLLZLPP//cnXSrztw6yO5vtSeEJ+MTRaoFmRo0thj1MwiVR/6tQLI0eTjQ40hLWgLfDDdya+24IwKVEebZhodq40VAgn6Fiu1puE5s4wMVav2EmEcFmtrTIH+jRcFXBK2KTiGDAJWh5tBqVAAraFRwaM3z4hl+XRM0Kqjn/e/I9YFDJKri0FXEoQMVCeSf/exnLl8K2hNpU3gHnODXQVJEOw+harBG4kmrKeLzG2+84Xy7lOEYDV7ogQFN0Khor+EdLT2h8TLpZsmbkea1Dd9HoNLlLFtBRqZNQhkRGnXVpkj424RvpKQOEahY51HmAYFC5dtzzz033VgHFR4WdGJaefXVVxMEGHNN5lLlUZl66qkTMsPyf2rEYO9ngx/kEm/ZMdCHNddc0+W7kLZFmxiCk5wfFNMLWbCEDFQktHFOJuRbuXHkHA+t0bDstttuCTVZRPuQw8FH4kGtIzsWIsmImEPDIsA/6FoaqR+DfN8EoGK1JuTnOfroo9M9xIKYQejUtN9GoNLnjF5wwQWu8qrSIQ9ymu+zCwP/jD7bFPqhalR88xvqeMIrFcIrL/pBCaLnkFKcEGEiQLbZZptkwQUXTIEKUT+rrbaa+z8RFKhsVadj0Of7v7/zzjsdWCFvCnMlnxUEJ34zikALnfdCzEwrgYDzMn4/Au4CIvgDrbPOOsnLL7/svpNwr/vBxIJ+xoWD7eqrr5488sgjtUgi2ASgooMHBy7Myph+4jU8BSJQ6YNDWOwIp9GjR7tTdegOaEMNkc36xhtvTIsShgxUJKSx4wIQstTxg5wErVqcUzYqf0AJfil6yU9Ffy+yyCIJIYWDPHe4ueE7ok3QHNE/nO5k30aw4F9AX0O/QgQq0AzTDtoy+qf5lzmICAyEiP5fB/+NkfjA8rjds0guCL8rhXsR/DxS37r9Hg1j3YsSCiRTkJBIvpB9grqdl6Lvi0ClDwprIeNUyclWp7E+mqr0J3XSqMi8cumllzrfDVTVOt1q0x1kg5XpRydqkn4BiBSWDEiZYIIJUs3KjDPOmHrpF3HKlnbnnXfecRoczIxWmPI9vlLYtqNGpb9lhGnntNNOSzUm4jGK9UFztCrii7qnIhCF7FqxPk5rrLGGc9SW9qg/ihb/q6YAFcpjEGVGeLrWdfHUq+8TIlDpY+6EiPGW32+//dLoDOvH0kezpf9kOKAi4ReSECQahmJ9jz32WFq8Ky/fAQtU5I2PWhyBBVjBfwegwucZZpjB5TwQQC3Cb0GmHsZHuDLaE1vFm884QRK5gZZJV0g8KODoa1RuueWWjlpJFugXxW9+uzgj438i2smRFIDKmiZfksCJ7yM1CCAufZGbB/pA1wIV5oRQ/6H87rrhqzzmzm/D/xugMuecc6ZrUmYTzUkefShijux+Cq9RvuCSSy5xjwrZz6wIWvTTZgQqfVBN6neYjxMvJiD8BuzpS/f00XxhP/GRO3+TsplIFjQGmH7kVKeFVXZkifrob4wIDaoJI7Ql2KxGxQq7fgio5/mbBtFFykwLjQAsmAtsRuIiVbf0C+Gx+OKLu9B4nXg1P2x4OPeq39ZRrx865PEbyzu0h8MxZjJppUhVb+mtMWnTzqMPtg2tSz1TvIQPkC6t1wceeCBZaaWV3DrQ/bavoQrCbmg21Hg0JgAazrXWLCQA4O8DWU73VhjbPbIXmtnn+fPGGMlhNOuss6aaTeoviW/8/a0bmhR5j/pjfez4H+uBTMfWlNsLjYrsc6htR6DSx8xYxzp+Tg4GTiRccq4twhzQR1c7fuILYcAVCeyoXyMhwulXGgUttDJ9cCRobaQLg8AXaMMNN3TRNlxlLmxs+NQTQpuCcyubozbRIvtiQQe5U0g8ZkNo+Z406GTORdtkaVflqd8+G18ugBRaKEVOnX322S53hy67oRcxrxbE0T7g87DDDksPFxKqf/3rX52TNCddO7+DrruQf69xQgPMEUsssYRz7rT/twBHc0toM35ivNBykFFVhzUBB18T1Q0dLCi05jZ+i7aLvXbKKadM8xoBLBH4lpe6eU4Z91gaQgv2VbQphx56aEJAgE/jMvpU12dEoNLHzCnKRJsqtmwq7KqqbaibHIuFRU1UC9EO2OfRpliHUTZqcsTcfffdDhwI9Zcl+CS0lNCMd/oAoKJgnEBTEQItixX0HBxayduCVkPzm4dvzFDsZ+kADRDsRGfIbGILlwEEyLsioFy1No++I+zw4QJgffWrX+3gMf4mau6uu+5yvKiEY0UBYnvSRtgBUjAfWiAO7RC6JNpDW1C2JrGPbSi3n0iIQg/qTJFTRrzk87qABEBl7rnndvO63HLLObCMuQwtFaUGMK1ZOna7f2QJdxIfwivnnHNOMu+883bwEgeHK664wvEaUXDSCOdGnAEbEr2kdYXvCIcXmPNlyYCPa+zPI1DpY2qt7VqLnBTbOOfJyVNaiT6aL+wn9JVT49ixY10lWDJuZr3IEUOekquvvtqNRyejwjpmGrana5lXHn/8cRcujM+IFni3G9+gfZZmDLAk04tV5RZV6VRgg+cr4gmTieoAWZCEVgUgJ21TET4zvdCRvisHyVA8xv8xmcKLf/jDH1L/myLMaHa+OIHzTIEjfUfiQIr1wWu+yr6XsdfxXgvYWGMAD7QkXFmgXLx51llnJaNGjeoADtNPP70rrMn+8sILL6QZlHs5WGi/gY/RyAFQ0CYOxUukEdh9991dGnq0OiFdohXjpzwDWc3hNf9A1gt9QhpfWX2JQKUPSov5ECACJIQ6gpRRK/smFj1C6LqPR+byk36eX/bJ0tKWz2w8W265ZULxQW2cZWoMtGla2tn5taA1l0n6dyN6njRLAmZsyPilCEBpg3viiScc/6Ex8M2OZW+C/YDIPDRlQ/G35vDTTz91UXok8rMnWn7H/wFOFgiXyWd58k4vbVmQIpCIZgntIY7GoqneLU1ISoj/lkx6VjOLppYQej/jcjd90/oSQO/mN3aP7eX+ou+1PElUFZpZLhsE0AY+G5TOEaj0QUG7eK1QICcJ1VfJGCqhqo3AntL6eGQuP7GLxt/Us/62m3ZZwk70VKgoFasBKvhmWC1DLgTpohFtmsMBtiL9kSQ8JPxRbxP5hGrdzg+fyTB6zz33dAgX2/8uhpvLLb5ws436fGRV44Nu2BZA2pOs1h7rEy2AhKfuwXS74oorOpravudCjMAbEYgTLcRnaDDRUNh9TJ8//vhj59R68sknJzPPPHNHCL8czlmzPsjulhRWA2ZB71B7lAUpZe1T3YzF7v348KD1hHa+bOgH2Hfz/CbdE4FKDrOpBYRWBfu3LSZnAcqgG3EOXQ2+CQtGOAGT30H+BL4WIfjB5NxBeAkaEBpNDhWdOLXR4TeAyp0kcJbv9LucuxNcc/6hwP5NdWRqJL333nsdNbowAZGXBwffNl6WT6xWC9PPsssum+bvgTasR6oukwhvjjnm6EiESDSccg7NNNNMzgeOq81rVuuOgys+ZEUUM20Lz0agksNMiyF5ZyEjSBSdYU9oEaiMTGyZUhDCnNhw0vOFrn+yGrnVZtwh/sEXBa2KTaEvsEKBM0LOrUahCq1KVRS3mi/xCf5FqNxxOpbwFL3QQK266qpOCxrSabxM+vn8IQd2UgEgYEmAhxnnyCOPHM+ZFXBCWgOBFN6JzsNvSvRs63qV5oSDK6ZFQHFbeWxQfo5AZVAK/vv3ErD8Sb4Pombsia5tKuV+ySo6UhQQdTynuKyTchsXvNWMEDWDw7NCQi0IRu1Ofh/frNIGFXMWr5C3Ai0A/jv2UIEGdKONNkruvffelFb98m1dfyd6WV8SmRsJeV9ooYWc747S1ls/FAAK+XHICaJ6WKQ6wAlf7UpYt3G9MnbACQAPUxlXG9ZgEWshApWcqGo3SJz1cGyUB7rswFq0OT2ykc1okySpGjkTtLilQrZ+CI0kwAiDEiDB0ZEIIKnYrSaBEGYy2Uo4tE2TZ3kEAQwtULvbNQqZKcew7bbbphFAbRSm1tQqYAtvUU2a6Cg/fYGAyqKLLuqKdsJr0JjcMwCXxRZbLDUXyZRUpA9XyHsA9KQ6MiHfNsos5D6H2rcIVHKaGd8ZjcgMCtYJnFhBm9Mja9+MLxj09/PPP+9CRa22wAriNp9KrBAm3812223n6GQdENkU9913X5cHx2pVas8wIwxAY7U0evbZZ502xY/OwrmR6sho7rRG28BXw2l5yQOFiQfzIQn6rPaEz5NMMkmy8MILJxtvvHFCQT2bggFwQ0ZfQKGlp9U0t4X/tI+hDabEBeuQS8Ct6XQoYnwRqORA1azFz8JFJYr6lO/lAd/GU9tQJLa2cWmdUMdTX8dqCnyzWZtpKF6DXuTE4VQrVbuNZnn55ZdTrR6/US2bHNg92CbET0pSCC/hKKvigvoeWhxyyCHuZTV2TQcqMnsJPGgd4U+Hb91xxx2XfPnLXx4PoABSqCROJW8ip+zhyx4gyFHDfqerbeZu7WE6lNpEjL42L9hFFGjHIlDJYWJ8u7gY9ZprrkkOP/zw1PO96kRcOQw11yb8jRO6kckUk4Y9lbUZmFiCW5CiiB8SlKEZIFGXH9pN3Zabb77ZNSGgnOsEBtaY1R7xmYylOuHbUFlA3Nprr+1KIXApaV/TgYrvaEyiPbLIErJN/Rxfg8Lf5EnBj4fDA7wkGvGOA7K0BPp/m9eqlQPU5yJdgELepXFvM30G2S4iUBmEev/+rRiURauTK5/J6kqFVtXO0EaawyMb0YSlG59JIEVWTMJsrVBuxGBzGISAnT250SzZLnHg5rLhoGgSMAEpcVcOXQi6CV9QkGFZ2YylbcKhlqR5P/rRjzrMYm0QIKLPH//4RwdQ8AFTwU0fpMw///zJN7/5Taet4wIQU16ANWrXpq9Nbps/lF0QGjsy4Pzzz3c+UFwWpDQdDBe1QUSgkgNl7cL1HcgefPBBVzYe9WrUqHQSWyc86MLpDGHLKWQoFXUOU1XrJiywE1jhHQ3Bkksu6cJI7QkXuhIdhLAJsaRDEZMBPTD9UHeGYpK+ICUaj9BuBK6lYVvWJvyBZgQgkqVBoX4P9EEbpSgpaEjdHnL04Htnq/5aGlqNTRFzG3qbAiREmZHcTSHvvsY99HGE2L8IVHKaFStEaFLClncSTam6snWoasMpbjjyWgdHcg3gjMfmaDUDbT6h+bTzT7I2QRfqe+qhUBtFmjveyWchFbTaE9/Vnf/sOO2pFeC2/fbbdxQd5HtMHRTdpHCeTrrSgEr45rQdBNsMgIzs2VNNNVUHUCGBGw7saALsqd/uV+TvIWUAZUIsL1mzTxsAsdWM27Hzf8Z/9NFHp+kpdG80jQ22JCJQGYx+HQvWbvxiUBY6aZMRInjVi5ktkMmpC7VqxgI7Th6qvuoL0boL0zImRVoEzGY4NFqNFM8nOujMM890pkjxnz0Jl9HHIp4hoCuTK+8ADhKVERaqE75ADFoCAAxOtjpM+Gu2iH6G1ib7EGYdHGSpRoyPE/yh/Wk4IIsDMhpiFSu1Qju0cRbVH/hJpkTfR4ckjPCfSn5kHTaK6leT241ApcDZtYsYJ1HU8NIWWAZvozAWUIEeTz31VOoQ2kZaDMqCOq1RXZkaLXIOlb8KmyaZMan+LBDTBAdSC0SUf4fijIrmkdaEd0JFMWkQ3SKQMijd6/Z7q4G69dZbXRQP+U+sFk4ANmts0tBRsBAfl7b6W1gtiejF/1hnJGFUlfU2grii1kQEKkVR9n/alTDmnY2SJGbUGrGn2TYzM2NHHb/DDjt0hD0WOCWNbFoCG80U6csxbYj3pE0ggddJJ53k6gCJ/9A+1BkYWq0cQAUzF2tMKQH0PeNEY3DggQeOF6XSSIYYYlCad2mgcLLWZUOWBfpsM1YDTDkCHJVxym3jZWmhtQcd8P2RU7sFMG2kUd5jjkAlb4qa9nxAglqedMpysor+F0ly0UUXuVwgFtQVOCWNbNqCElLnzzfffAlF+HyakiFT1ZXhvbrnVrFAhYlFa6mKv1YzgHMj4bUffviho0ndAVq/TCwBK8dhq2Gx0WKqXG6fYx1luZfwbrQxdQa6/dLRavL0mQMXyRd///vfp1rLtjho90vHXn4XgUov1OrxXuvgx2cSdFFdmWyZXPb7Hpsu5Ha7ceX9gCxfAE7AZLlUrZWQgNtwmi5/c656s5bAloAhJBlA7NvPCZM/9NBDnY+G1PZ1Vt9b8yF+YGhMyDiruWP8CAuc2TnpWkCXN3930574ZCjesuuvKJ6SYLXJAQVgpEkZSqNiwcp9992XrLLKKi5dvq956YYWdb7HAmQ+Q8tx48Y5rZ2uIvfSOtOu375HoNIv5Xr4nd2YACmkVZazlfWq76HJvm4dSigJINiNqK8HDPMjKzR12j3jjDNc9lSd7KsWmhY4WiHoD4vvcCZEM1YkzbqdA6s5oT+ffPJJssIKKyTUnPK/I7wU51ouCahunxPafeIp5oJwZEXzWO0Azo0rr7yyMwvZk3BRQCBLaFuANBxYktArck/IGrcFUOKLLJ5X35U8D5Mt5kT9JoS1UAaP+kCFKCi0wpZ2ZfBXGWMN5RkRqJQ8E2yqLG6KpLHglWG0jG7Ijk89D8xQvMicqNDMIjUaOt1KiLz55psu8gBhymVtvWXQIusZ6iOnc3yJyEuS9aJ2B7VOMK9YoVhVv7Upys+AfhBmimOffFIElkmAhh+HTdxVVb8Hea5AFu+EtqMpIrQdPpLKHR+KLbbYIiFDtOWxIoGAHZN4WnylOcB5FR6y6xAnX5wwBdpDFHS+5gWT2lJLLeUy/Oq7ENbxIHzVzW+1TzKv1NVCY0eU2XCHm27ajfcMTYEIVCrgDjKGUigNgTiUGriIbrHA8PafZppp0hwKLDKr3Slqg9RpUYKEhEjkG/BPJ0WMu5s21Q/8GAi/3HHHHZ3NmXBW/0W+CTQWABXrC9HNc4q4x26c+gz4XHPNNZMbbrihQ0gzTjQqP/zhD0sFyXmP2wp9SgUg9AVGBB7xfyKbKpflsyIBuR2nL9j5Dp4hAR8+HuQy+eIXv+jW4mSTTeayMpNvCTBZ5r7Q7dxYbZC0n5QooAK1Djuifbdt1vE+zQ3vHPaIqGuLNqmq+YpApWTKa5PE7HHllVeWGuLHwhJQYYPkBWASUCnK9KINTqdFfCWwb0sjUbZKPmvKBdAwIWRl7LT/m3DCCROEowRj1UmubMSGPdHedNNNLgRVPik62WOyIq8PJ+KigGkZy4q+EyaL/wknW/EZ75h6ll122eSxxx7riLKTNqWMcVvBDj3QXqLNmmiiiZzD8zLLLOM0En6lYtYk2qAy+tjLPFn6yscFumNaQyPUBm2KQC+0IO8M5RhIhBcisOxlbkO/NwKVkmdIi/mjjz5y/hkIa8v8RXaHZ5NrY6aZZnIgZYIJJnD+Mjj52hNB3huk3eAARdhzSW/OpRNYVScSu8EgHKh9gsZprrnmSuacc073zovU4vocWj0iaXVk8hAYRoiQ9pxoGIEZOUoSrkxiKkWgie/qsOGKP4m04DSLj4C0F5zsAcREOLG+uCxdJGCLXGeWluJrQoG33HLLZJ555nEO5GhVyKCLzxpmK0ogsB6lYeH7LKfWMvo91DOsJoFxKXqKvnLwYP1YsKJ5yns/qYIGdl2I18iLRai29rEq+tWWZ0agUvJMS2jzWGznpLO2TplF+jywidxxxx3JzDPP7LQGaAYw/ZQJVDjlY5Kw6veqNjQr4KH7tddem0w99dTJmDFjnHDHz4N3XoRi8o45gVO6HzVRMhuN9zgr1ERb6Prcc8858wc+N1yW7pzuMZnYk39Z/hu90MsXkOojvIQJS4JCGkE0dgsttFCHVqIKAKZn0i+E2oILLpgCdH/8AJavfOUrbk0CVvDfsnlOeqFXkff6AptnsX+tu+66bm3YdeFHnRXZr6LatnNoD1NEl2G+JuopBPNvUeMPpd0IVEqeCaFxPRZhQWSCFgSnlKLsvDxDQIXNkE1RGhULoPImCW2zgbHxkq5bGVKrOmlZwayTIQn5SJZG/yjAZoXjcCfMUNXdls+OOOKI5LjjjhvPjwBHW/xvmBdFchTFe4PwlPjHviMgCMNGM2nnk3HgRAzI9NfaIH3o57fqF47L+KTggD3cdfHFF7s1iWZl4YUXdlXXQ78EfNFqoWnEvCW6S4BXARLzopsFKppPNHZU3+agyRjL1NLlNa66tROBSskzZjdVHk0+ArQaMLutH1GEEK8KqIjE55xzjjP7qE5IUT4xI02p3UjVB3x3ZpxxRgfkuCxQ8TcrqwGyGoqRnlvm9+Iz3okwQauiYnJWgLDhoikCqBHWzAsQoHc+h/JS/3A2lbZL4EXz8Pzzzzu/DxuOXCbd7bNEZ8xsrPHhwC/fsS7kCwVQscX/qhrDSM+1Wsk99tjDOchnpSIoYj8bqW95fK85s5pG1hN+RPh+2b0hj+fFNrIpEIFKyZxhgQqfQecwPSp6q1osQohXCVRIa07lVTKnWiBQMvnTxwmsSEBsttlmzqkR4Pjqq686U4lShGvOhnLEDBGsWGHB57Fjxzphid+K5TMAyujRo53anqyuvEhepXc+h/ACmOAPoMRaRGZhsrSgE80QtY7uuusuN89Va7vEN0SSIdRsmLLP9/QVE4qc3DfaaCMHtkK/pFFgrKybVVddNSH1gAXKofna9EJT8ZDe4Tm0kw8++GBHJFmdx9gLPaq6NwKVkimvE6BdyKivqZ3xpz/9qdAwt26ASh4nH6txgLyYsxCGLPAQQIr6IICB6W3aaad10Ri8L7300i7kksisp59+2pkXBByzTsUhAhVtrDanCH4P2mAt6CIPBs7NV111lXtRZTi0F/1TH3HeBPBasMmcAmI23XTTdEVX7W8jXlGHhgNO3EtOITQqU0wxhZsH/8pjbea93Vk+o22i4TC9YT7Vugix393SwQJhfkN0E1ojcuEIpFXNZ92Opc73RaBSwexpAduTLSdewpV1EixicfO8kXxU8hC6foQJ1ZGpuGrDZIvQGPUylRIinJC+853vDBmSPP300yeotNmgqOOh+QnRlyNLsFk6I+jJDWOjM6qeh17mzL/XCn40QwAxm3hLh4FBnpHnb7Wm7foXH2L2wYkb8yN+QxbQ29/l2Z882vJNH5jn1lhjjeTuu+9O10qdeYxBKDKOdYO/l0qgWP4qYr/OY36a0kYEKgHMJAsZPwBOg0Xa1nkOacZt1M8hhxySOo/aDbRfsugEgkmL0zzhyBtssEFChIZMXbJr9/uMPH6nDRa1PFFIRIkQgjzddNM5zYrNm4I6fsopp0xIbsX8aIOq24mROYHHiG7iUlZkqyWq42fGccIJJ7hwawuSxYt58EuebWT5cCDYZ599dlejSTWbrNnB187k2Z9B2rLaU33GTIdjusyMdRfiWuc33nijK9VQ9/EMMt9V/TYClaoob54rxieEkXBLhDvmkiJepO4HqCjqB6BC6vEinsVGhZqepGNsvnaDrnqxa+NHhUt0BRkm0Tjgx8EmSzIu8s0ojFvAhROVwkat83MAbNRVF5h/NA+cfKueg646PMJNjAGnU6K1yPjMJW1XiFovq7HkM/OAOQ7nWXL4EBFHfhgLgn0TVx50y6sNq1ERvRkTvkI4qPMZbRcvQH7dXvSbxG5EM+FLSFhyvMqnQAQq5dN8vCdaGye+Edddd12CuYSsm3m/OBGgNRBQIVX8Qw89lNtz6LdemJkw+Sghlz0hVu185oMmq0lggvDbQIOy+OKLJxNPPHGHhgVAqSy7OsHXQb0tYIIjKtoHzCRPPPFE8vjjj9fyRd/JA0NSO/IRcUnAh5rDg/5xMMAfBYDCPKCtAwjDZ+RSwQwMWLHjCVWjYs3Xto/kGsLX67TTTnNRZawZHLbr9qLf5FAiKR/h4/GqhgIRqFRD946nWlsnjp0HHHCASwt+1FFH5frCCQwghLOeogtIf42WQM/injyeS/+xuWNqwLHOF+hVn+ZlflJYuO2f7dsLL7yQEIGBk62yhpKaXc6c3Ft1Cv1uWVjjAph8+ctfTr761a+6mkW81+21/PLLuz7zPv/887tcRFabIqFZNSDOmhuiYwBX9Jvsx6NGjRrPRwqwYsNfQ9QOMTbxlPonuqOJYN2QkgBTI87B5B2p4wvHcnLgoOm2e3W36y7eNzgFIlAZnIYDtzBcNMDAjXsN3HPPPckss8ySalQOO+yw1Cae97NY1KeeeqqrFK1NzZ7A8n5eL+35Ds1ZDs52IyYx36STTpoCPPKPSCUfqjbF1xLxN87DZBE966yznDoeB2Gp5uv0jk+Xcr+QtJAsoX4JAf3dC1+UcS/mA8wiaBzRMBAls8QSS4znG8VJXgAgDyf3IsbmAxR4DDMymhT84bSGqj6Y5DX2MvfqvPrchHYiUGnCLA4xBiuotFHgtGd9VKiVgsbDCuVBSOILR/Kn7LLLLh1OqMqCGqqAt+OXsMNOzQmerKGo6ffee+/UGTXEcejkZ2lNPznRrr766rXRAo3Ei4wT/wE0g2hVGKP1HQpxbrLGhHkUAIn5RzV/yEmCD5W0QiEKe0tv8Rw+XwBH0i1wxfDdkbg4fj8SBSJQGYlCNf1ep32ZNrSJ+FE/OI+SSl2mkEFPDGrHbk7YdvGNsd+FanP3p9uadi699NJkqqmmclqV9dZbzznVhqpVsSdxPuNT8/HHHzuwRXJBH1DWkc01N7zjtI2gV5I+RTTJlyi08fmgQ39T3E8FQ3HmxkxknYNDA16+RgVtCmZfhSfXZZ2Hxh+xP50UiEClgRxhQYdONDplsoGwAXJq44VGBec+aVTysOn7Do0AIRLake3VhsSGtulmsYL1XSGqhArKaFQIaVYoeYgnXfokIS2BTkTZzjvvnPoMiU/quAQEvDU/mLQQ8vhD6LtQzSWWX3Qw0LpDK6RoM3zJ8I0QGA6Vz7S30D/52KFN0TyE2O868nyb+xyBSgNnX5sfGwiqY2qjyP/A16jgzS57PyduQMsgAEKqYAlKlYInB8H++++flobPAxCVMXU6EdJfissRtgxQQaOCs6MA3iA0K2IcVqNG+0SZrLTSSmnRuJCFXzf0gN5+Hhhq6qy22mrO5CDhGJqQHAocSqgz9q233tppVcjng6nOgrLQ+MyOB23WgQcemLz44ospuApVo9UNj8V7wqFABCrhzEWuPZHphfTvOMwSBonT4RZbbOGifhC2bIZETZCZle9x6kOgDXIJJAmw6MSrDZisjtZx1T5rULNTL/0WALH9FehQOxLmNj8E4dbQjrBupdG2QqaXPhR5rxVu9JMILKK7rKkqNCHeKz0A4hKEzCPjJMqMkFLxfwiAWDxmwZPV9uiz/KEwx8JjRAPh/B66ZkJrCe0PPMZl13IIc9Arb8X7w6JABCphzUduvbGbIiBkmmmm6QiBlOlHicyIaKHCLhqQvC9tZGhuCMtUmJ+voi9T4AtAyYdHQsLa3K2fBzQB9JHBdsIJJ0xOPPHEdEMOcSMWIKGT5EvBgfaXv/xl3lMbXHuEjS+22GIu+VuZ/DQUIazmSuDJaul8Myl/n3nmmW6tzjrrrO7gYAFziBoVxk7eFyLjcJ6PV6RA3hSIQCVvigbSnr9J77vvvsnkk0+e5gJR9IreyeypjKtFDEF2bPJDXH/99e4RFkyVnSfCmsesn4DvDEy/lCfl5ZdfTr70pS+58G4y2VozV2gCRMIQUEh9H4Rf0y8JfSKy0CCFAFSs9tDnF31ntVzMEdmiASpE/Vj/j9B4TGuYNXLZZZd1JN1rOq/F8ZVLgQhUyqV3aU+TgNVmSNEzUtlj91biMoGUeeedN6HmjYRb3p205hW0KphN8JmxKm2rAcj7+Vnt2dOtgIhAiu2vNaFQTwbNkypd+/0vo9/dPkP0BBTiT6OCit3+vq73Ma/w8nzzzZem1K9yLH4uF2sGstoU8ZKcgslWS44Va0INEahA23fffddpSul7UXtIlXMYn109BSJQqX4Ocu+BFbjKo8EGgjMoPinKSsupbbbZZnOJmfi+yPwm1maNY+1JJ500nmNtmT4TPAvwhuMf2pGf/vSnHWnLfd+VN998M1lwwQUTQN3zzz/fEYkRYp4I+o8TNXV9lHAvd0YLrEHLYyRLo2YTGqUqL/qEAP/5z3/ugJO0lr4ZSCCEqCU0n9tss03qFGzXc5VjyXo2e8Zxxx3nopO4ytaMhkaP2J9iKBCBSjF0rbRVq1K2JzI6hWDGzwKQQlp4Kp1qg7Ebfd4D0GYLQCDBHAW+KMBmT2BlAxXAiXx3SGdObR+EiRLgQQPVZcEJmXuoAi16WWGTN736ac8/zWLuIYJEkVf9tFm331jQuNxyy7lCk/5VNp/dfvvtzm+GpHSYPvE7ITJJ4IT+AGDImUKtH0o04A/FpTktW+M41Lz7PEZyN3xTcGSWVihUzU/deDn29z8UiEClodxgN0F/cyGSgEqt+K3oKlpl6zumosWgpL3d4MoWIM8884wr0CiHYt5XXHFFJ9wAUeSEwPZOpA8F1h5++OFMeoWwMUuQyYyFiQ1BTVFLC0Qbyu5uWNYfhL+paYTQlxZDQLws52f1Bz7HAVt8xkGBIorMDRlpqSdFyvkll1wy2XXXXV1iPq0Fe3goc31k8Yl4TGsZbRVZp+m/9o8Q1kKTebytY4tApUUzb8EIm7jygBRNAm3YOiHyN5oKQhmpgOtrfYruj/pBH3BcpM4KRfpmnHFGB1ymn356Z+JZeOGFnbCnSCM+NbpC24ytM+Y///nPhBfjQmuVJcDLoG9VzxAv8Y4mCUdiEt0RxmzBcllzyNxQiXuNNdZwPIUjNvzFi1IW8BcvNHbkTNEVYqFLaavk4IuZitQHFgjbtV4VD8TnNo8CEag0b06HHJF8UCSoJcTKIIF1StVmxgZOgigcPWUaKqMvVnjzmQyzaE5+8IMfuEy9nIDPPvtsl2reCrSitU79jl2h1hLETz/9tANZZAS2IKbf9uv0O5s/hbFjQllkkUWc5sIK1DK0E74p9cEHH3RFOhHugHT8tO66667kk08+6SCxBVsh0d7yErWvttpqK1eywGrzyl7HIdEn9qU4CkSgUhxtg2vZqmfL9K/Q5mWLxen5nHZvvvlmRyuBmTIIp811JPBhfQQkeMo6jXdLB9EN+uIgvNlmmzmBKMHM96FWEu52jN3cJwBsc+Lwu6OPPjoZPXp0mqCvLIdP6wQ7HDDyeazMddANXXWP+gn9iEg699xz3ZpFcyVw1QY+64Vm8d58KBCBSj50rEUr2sjtCbwsoSshr41Mz6XkPRlxdTIri5D25O2bpuzGbM1SNqdKWf3s5jm2Xw899JBz3FS0iz0FlzXX3fS5qHt8PwrGTLTbCius4BLf8b1S7wscZ/VlJADbbf8FOrJArj042PWh9dntM4q8zwIsrRnCkbfccsv0sRaQtYHHiqR3bDubAhGotIwzJJTz2oi7JZ/dwLQpaxMk8ggHVp3M1Mci7d16tt2I/X75fS7KXGCfK0GKMPVPsnbu7GcJENTxOP4+8sgj7qd+u93OVZ3v05z580u4Mv4qAGILGpSZmPBhsqsS8eWDCvt3P4JYv8kCK1ntFcn33c6t1Z5YsPX3v/89Ofzww5PHHnusIyKp7P2k23HE+5pBgQhUmjGPtRyFPVGimifUEQGtGi4yWdRycD12WgAFIfXUU0+53C5KeW8BhzQ80hyIVoAVCkySKj9enRTQiZ8SEeedd577Ej5TnSDAy1e/+lXnN3LVVVe5PDlvv/22y0Mjp1ariekHrNRtTkQzy2fwGHyJk7a0Pm2gRd3mron9jUClibNagzFpI1So6C233FJpdEaVJLNCgdBUwlQJZd1ggw2cEyj/851EfbMB98w111zJ66+/PlD16yrpUNSzZW4kn8laa62VZum1ZiJqN5FoDbpTtHPxxRd3GYgJSWcOAC5tEs7y4xHfwaPkftlnn31c6D5XURrGovggtltfCkSgUt+5q33PrYAmpJYaLWyC+r/U8rUfaBcDkHod52LS9NvcLoSuknPDRodYLQu0I7EbGUK5ynIW7WJYQdwiHx5otttuu7nEftaZHJMjQhhtlOiuMhP6mwy/ZJjFWbkNl+/gC+2IjDvrrLPc8LVGo0alDdxQ/RgjUKl+DlrZA2vC0MmMcOADDjjA5VixwqXpm6F8Ekh+t9JKKyWjRo1yAtMKS8ALybUwj5HMzfqwkIuGjKYAFpnLuklq1tQTsT8u62MB4MOPhyrLugAqmHkITYfuqiwu+kN7fFysr0nTF60PVKAPJh/qKHHF6J6mc0BY44tAJaz5aF1vfAdD/CwwA1nh0nSiSCgAPnCERb1OcjAK0/mAhb/x5+E+8r+QK4Vik/hWSJtinTFFRwlvq4kJManYoHMtc45oYJ08RQPS2CN00ZAQEXT//fcnm2++eUfBTkt36mORHLGpwC6L5tLKiZ6EIl9xxRUd61JaqUHnLP4+UmAkCkSgMhKF4velUgBfADQHCOCsKIlSO1PSw3xgwWOfffZZV5GWKsDSsFhz0FRTTeVMZT/60Y8cUFF9IgET62NAe6KlDQ/X/0oaZuGPseYIm7NH9JVGBO3Auuuu6+pcYTLzTW0CKWhUJplkEuc7BT0V1tx0DZ8Ar4AZTt3f+c53Ul8pC2IKn9T4gEiB/6FABCqRDYKjAMKX6AzryBdcJ3PukA0HtU3js4OGZZ555kk1LBaw8Bn/CSKFCE9W9mFFtEBDTBvvvfdeGv4ts5AFSDkPp7LmBFAEJqwDLHTAz4fIFZxlLR1l5pl66qldentVGOc+wDOXtAtt0KwI8GKOVAZdAV7rhFzZRMcHt4oCEai0arrDH6wEzHrrrZeQWKoNp1d74re+AdZsgf/OzjvvnAIWCVIJWyJWADT4YGASss6iVOvFtPHGG290FI9rmureauCsyQuAgonnvvvucxoURfdYzQlVtNFe4SOFU/LEE0/swArp7lV92pqTwl9Jg/VQYBbN3ne/+92UBhastQGwDUbF+Ou8KBCBSl6UjO3kQgEBExJKoW62TqM61ebyoIAayfIpsdmDbVep6IyPymyzzeacPn3tykQTTeQiW6j3Qw0lEnRRVJH7OBlLbe+nmQ+IHAN3RQAMgIHjMRoUIqcsrUQ7qhoT1o0wBtBx8fulllrKaVZeffVV9z9rVmoDeAaE4JyNzxjaOtHFgupuHLYHnszYQKTA/1AgApXIBkFRQFoEwkD32GOP5MUXX0wFhTZLnZaD6viAnfH9caxGwGpWeAwCGMFKvhWcbq2GQMIYjcC+++6bXHfddcn888/vhDT3Y/qwjspFnIqzHKE1hjyF/FBtIkABKDjJkgvFB3P8jY8PtKNyNj4outTmxRdf7HylrDAuglYDsk0uP7fgwzpbU2EdjZLV8gm02fdcOhEbiRQYhgIRqET2CIoC8rFgc3zrrbeS7bff3kVnWA1AG/KEMH7rEMokSVC+8MILzhkU09hPf/rTZJtttnFCl0RlWUJZ/+P7K6+8MjWn+dqqvBhB/baAxc5rHs+xGg4JUp6B2QtzxbbbbjssQKG+1JtvvumAMGAF/x4u9RPfDJxu23BpnuwaI8ppxx13dNFOOiC0gRZxjGFSIAKVMOeltb3S6U5C9JRTTnGht75tPM+TeYjE1slWTrECLghQwNvpp5/e0W1q1VDLBj8LzD++o6icRddZZx1X76ZI/xSFPVufDntSl1lrELoLqEi4AlDIJ4MWJAusoXUCzO21114OAFvgR+0a/o+pQ+0O0re6/VbgjLFr7tAonX322W4oTXS6rtsctb2/Eai0nQMCG78AiE55H330kTMBffrpp62KutApFjpYsHLvvfcmK664Ygc9rNAlume11VZzfhf4X/CyieMmm2wyJ9B9U1OebCBQqX7ZUGlpP/IASrRFckDKBnD6zwIoaJGgxVZbbdWR5I2+KdyYNmaddVZXaE+Os23Q2mnOBVC05ijOSMi71lwbwVue6yG2NTgFIlAZnIaxhRwpYFX6EhokmiJkWSe/PIRcjl0upCnfb4Axk1tm7bXXTu688840A601e9iOIHQBJYAUwIqyrSLM0chA26KcIX2fBvrF89BY6BrU30N8Qi2erDwoaJXQLpGLRg6xerb4R7lR+P+1117rAB4aK4V0NzEhXhazapwa9yGHHJLccccd7laVsRh0vgpZJLHR1lAgApXWTHU9BmpPshLWf/nLX1zoLT4FbbokHHTSPfPMM5P111/faUPkByKthXUs5bsLLrjAJSsDpCgMF+BCGC4RQ/i3cBUBVtRv/Bsws/C65557HMDS35if7NWPIKTvRDatueaaqTYF0DL33HO7uj041PrASDxlzR20A4haZZVVkptuuqlQbVOI/CsNGLQhDJ4QbvGGzUMTYt9jn9pBgQhU2jHPtR8lJ2fCbHXirf2AuhiA9eXAsXPZZZd1lXyt+UQCRWAGcwZhtrPPPrvTNMw000xOcC+00EIuRPfII49MfvzjHyeo9we9pNXQs21/qeZMZFJWCDXAiblU3Rj53/TquyJwc+uttzoANscccziTha3j08sYoS01kzB5WH+NXtqo472iO1ovnIzxd4pXpEBIFIhAJaTZiH0ZkgL4EVA0joiOojQBoZHfnv6p+EvKfPmsCKzYk6+0BGheELgbb7xxctFFF7mstEqxb8fYKzDw6SM/F+uDwj1kcsWPBqBEptfpppvOvRMybf1IFlxwwYT07AI8vfZHzwdYAHyef/75tItWS9DLvOKQTLiyjVjq5fd1vFe8hO8SOXjiFSkQGgUiUAltRmJ/xqOAzBP4Ghx88MGZQrdpZLMOjpxwyYWCKcOGktqQXwlt6IDwH+oSLa0v0CC0syCDdgANRNjMOOOMyYYbbujA5YknnujyceADwv9VoZh3wArmG65ezT9ojxQdZn87iMMutEYDJbNR06PLBHQ/++wzZ1a0AHgQvoi/jRTIkwIRqORJzdhWIRSQcKbxH/zgB87foQjfikI6P0CjjBtTF6nzzzrrLNeSLYxn86zI6dFGTVlNh+glTYOvBemnm37IMX3dYYcdnLnpkksuGa9JsuQS9oqPjC0BcOGFF3Zkfu22LxZs+Y7WClvuJVeMhDSgiqzIJB1s+iUaUqCRuekHMDadRnF81VMgApXq5yD2YAQKSLhyGyd2Mq7iA9HETVWaAZl9br755mTppZd2Y1W0ivUNkUCWn4eNVBHdfDORnpFHCK7tC6nqibYh7429/OdgYsAUJDPQDDPMkCah60WrQrsCaDIbWfpZLVM3i0xgDl8NaE4ouNrz37tpL9R7LD/wGdMgJh/Mg3athdr/2K/2USAClfbNee1GrI1VgmfcuHHJNddck0ZnSBDWVU3v+2hoPIQjL7fccgnOoqKBL8h9k0eZk2tzsQAYjjjiiGSZZZbJ7IIFEtxLZIm0KuQ6Yaxcvc7hUKaKfoGFnk84POn30QIJBDbBwVZj0XygNUJLeffddzv622iyMnkpPitSYDgKRKAS+SN4Cli/DD4T2komUZLBWfNHr0IupIFLg2JDj3GgJT2+BIg0KqH02wo9zD5EJVFfJ+uyfiN8j9ZFNYpGjRrlIoCqnj/xGf2gbANlCghX1v/1Xmezo7RQAsNowTB16WoCGAtlfcR+5EeBCFTyo2VsqSAKWHW+NlhycowdO7Yja2tBjy+lWetvwef333/fOZriGBuqgLSmJXxBmJOs6CII6JsbAAAy/1Ag0JqwSiF4xkOsozFfM5711lvPhXJbIFlV//J4rgVdgEuqI5M7xR4GqgaMeYwzttEsCkSg0qz5bORoJMQlzPR+wAEHJC+99JLz3ajzKZdJkyDUWHCgPeaYY9x8WuES0gTr9C1Nz3D+Jdb3gc/XX399ClTIIKtxVjmPMmVZ8wep90866aQOM2OdBbkFl2SfpZYWIFNrSmstJD6LfYkUiEAl8kAtKCBhaIUIaeLHjBnj0rPXWXhYh1Qmg4rIiy++eBpmLPASov+A+mbfsxjKmn74TH4XMufiUHvaaae5n+Th3DsIM+v5FlQ988wzyfLLL5/8+te/7gCNgzynyt8KCKIlIrJJBRrt/A0HOKvse3x2eykQgUp7575WI7fOpNaM8O1vf9v5RWByqPsLx038bzbddNPklltuSefHhhaHOmkjOa/a6ByS91GDh6y1ZJQFmA3lFFv2eAV4rRbroIMOSo4++mjnt8Ic1Z3PGAch4QpHFo0jQCmb2+LzuqVABCrdUireFxQFdPqlRgvaB/J2XHnllc5Js66vG2+8McGcRe0aW8AvKML32Rk5cSIMP/jgg2SWWWZxUT8UwPM1Sn0+orCf/fa3v3X+Qqeeempy9dVX15a/tD6IaMK0qOrIhREuNhwpkBMFIlDJiZCxmXIpoBMvT8UZkMgFTr3Usqnbi37rtc466yTXXXddz1lay6V+b0+zkUx8xi8CkEIGWBw6uULRqPgjE5+Rop86QjifNoHPXn/99d4mMd4dKVAhBSJQqZD48dH9UyBUB9P+R/SvX3J6R8uAer5JlxxVCUOeZ555nMnnoYceSoc4ko9LlbQguSBJBuvsB5VFPwv2q6RvfHakwEgUiEBlJArF74OkgJxrJQD9v20ysjp8Vgp4iE2UCT4qVUbA5DnpMu1gztp///2TKaecMjn99NPdIzRuzVFofhI4aqNNoXo3Vx14aag+2ugsmeKaBr7y5NvYVjgUiEAlnLmIPemBAorMUMr4Jgh1+d3wTqI3fDm4NLY6jdGPIkEgEg5LpM+BBx6YzrSNBqo6qsnSV4CJdP8UVrSh8T2waZC3KhQ+yM7FTkUKZFAgApXIFpECFVNAp1ud2HnHsZawXZtfpS6nX43HntrffPNNV4wQPw9b8dhGc1UNxAROFKFEennMcI8//niq/ZG2omKWiY+PFGgVBSJQadV0x8GGSAH5CljzB0KSyAx8OqRVqQtQ8bVdjGGxxRZLNtxww5T80rhwr9VWVD1GOwdkpj3xxBNTR1+bFC1EPop9ihRoKgUiUGnqzMZx1YYC1jEYbYM0C0899VSy3377uVBlCfQ6DEpRPvSVvDDrr7++K67IZwu6shKsSdtSxTilvYLWv//97xNy9Lz77ruuK5qjqrU+VdAlPjNSoGoKRKBS9QzE57eeAnI2tc6OMkOQbOy2225zNKqL2UGaByoiY+ohsytJ3iTwrTbFhiWTTK1KjQp9ASjxTkK08847L7PPrWfYSIBIgZIpEIFKyQSPj4sUyKKAgImNXuJ/FCfcbrvtXL4RCXF78g8hSkb9sU6ahFfvuuuuyVxzzdXhFGz7azUqgBSAASavKi7bdzQ/u+22m+u3BYcxnLeKmYnPjBRIkghUIhdECgRKAQn1s846K7ngggvcSV8nfjl8Vh0pw/NtUTv+BnSQd2TZZZd1ZivbV/sZoMJv0bYQkk2yu6oumavoH325/fbbq+pKfG6kQKSAR4EIVCJLRAoESgHr67Heeuu5ZHBc0roIpFRpLrE5OwBSaH5OOOEEV2yQXDA///nPE3xteD399NMdr2effTa55557XPjvxBNPnNx1112lzkRWNlyik9BgcdXF1FYq0eLDIgUqoEAEKhUQPT4yUmAkCiAk0TYIhFAmgPwjNteKPo/UVpHfI+zRmtBPzDZnn322Aym9vlZZZZWEir5lgi75yog+PBvn5Zdeesn9K5p6iuSc2HakQPcUiECle1rFOyMFSqOAHGxl7kFTsc8++ySc+CVE7XtpHfMeZH1q8DGhIvKEE07Y02uiiSZKxo4dW+oQLCDS53feeSfZcsstE7LRhgACSyVIfFikQMAUiEAl4MmJXWs3BRQKK18VzCiYJdBgWM1KlVSS+eR3v/tdMu+88yZLLrmkC0Xu5bX66qu70GVlGS5jPNbsI63QyiuvnFatFlAsoy/xGZECkQLDUyAClcghkQI1osAPf/jD5KabbnImkqodaWtEto6uWsdZaVOuueYaZ7biUv2hECKq6krj2O9IgTwpEIFKntSMbUUKFEyBX/3qV8lee+2VfPLJJ9GHYgBay2SFdop8L+uuu27y2WefObOPDQMv02dmgOHEn0YKNJoCEag0enrj4JpGAU75hCpffPHFHZV8mzbOosdjw6Spjnz11Venj5STbZVZcosef2w/UqBOFIhApU6zFfvaagrodI8/CHlKlJAsmih6ZwvRjGiqLbbYIjX52Ho+MTy5d7rGX0QKFEGBCFSKoGpsM1KgAApYB1AK5p188slpCLMtbFjAoxvRpK2ppNpJe++9d/L66687M5o0Kar6XKZzbyMIHAcRKVAQBSJQKYiwsdlIgbwpIGGKACVcmbwqL7/8cqoNUChz1ASMT3kb7q2IqYcfftglmxsqwidqqvLm4NhepEB/FIhApT+6xV9FCpROAQEQCdAnnngiOfjgg9PoH0UBxURlnVMjTZTNjUI4NKHeVEnmiqCkdHaOD4wU6JoCEah0Tap4Y6RA9RSw2VQRroccckjy2GOPpRFAMVHZ+HNkqzUr2ueiiy5KeAmkxOie6nk79iBSYCgKRKASeSNSoEYUkLZETp+ffvppsvPOO7v08/KpiL4VnRNqfU/4BifkPffc09FMQCXSrEaLIHa1dRSIQKV1Ux4HXFcK2ERlSkrGWE4//fTk+uuvd8OyhQzrOs68+y3Tj3x8SJp36623usfYEgBRq5I35WN7kQL5UCAClXzoGFuJFCicAghS+VJYnwo0AxtssIFL/55VEbjwjgX+AGmf6CbhyAcddNB4tIo+KoFPYuxeqykQgUqrpz8OvikUuPnmm52/igUzTRnboOMQTajuDI1wQo5XpECkQH0oEIFKfeYq9jRSIJMCKl647bbbJq+88kpHGvhIsn+Zd7juu+++5Nhjj00z+kbaRApECtSDAhGo1GOeYi8jBYakgMwW5AXBsTbmURmfVH/729+SffbZJ3nppZciJ0UKRArUjAIRqNRswmJ3IwV8CqAxUF2anXbaKXn22WcjkQwFAHJXXnmly+TLJQfaSKRIgUiBelAgApV6zFPsZaTAsBoVJXuj+u+yyy7rMtcqlNnmXmkDGeU8q5BjaiPtsMMOLrlb22jRhvmOY2w+BSJQaf4cxxE2nAJK8ibBfPnllydnnnmmG7WigNoSeivHWWlNGD+aFFVHFq3aQo+Gs34cXksoEIFKSyY6DrO5FFCtGvmm/PnPf3bhykS5CKy0JRoIYEKYtsb7m9/8Jtlkk00cLfS/GIrc3LUQR9ZMCkSg0sx5jaNqEQWyMtI++uijyXe+85204F4bTB422Z38dkaPHp289tprKWATHaJGpUULJA619hSIQKX2UxgH0HYKyBdFmgIBF6JcnnnmmQ4TUNNpZRPePfnkky5VPpetnhyLNjadC+L4mkaBCFSaNqNxPK2kgNUQyA/jxRdfTPbbbz+XV8W/mqpRsJWS11577eStt95Khx5NPq1cGnHQDaBABCoNmMQ4hEgBnwKAFTQrJDi75557MgnUNHOQ1ZpcfPHFCTV94hUpEClQfwpEoFL/OYwjiBQYjwLSHrz33nvJ3nvv7UJzZQLRzU2sC8SYfvWrXyVrrbWWG2bUosTFESlQfwpEoFL/OYwjiBTIBCpKAnfuuecmF110UZpXpenkOvTQQ5M77rij6cOM44sUaA0FIlBpzVTHgbaJAsojgvnn17/+dbLHHnskn3zySUqCpmZnZaybbbZZWt9HdX7aNPdxrJECTaNABCpNm9E4nkiBf5s8lKEVglx77bXJaaedlppCmmL2sU7BOA1vtNFGyYcffpiafaLpJy6HSIH6UyAClfrPYRxBpECm6UfOshLW22yzTfLuu++m2WqVdr+O5LOOs9Ka3H///ckRRxzRoTWS+auOY4x9jhSIFPgXBSJQiZwQKdBACkh420rKzz//vHOspQ6QQpjrPHQAmExYZJ7daqutkvfff98NSVl56zy+2PdIgUiBCFQiD0QKNJYCSmqmbK38jQZlr732Sl555ZXaj1saFQGySy65JK1vZDVJ0Uel9lMdBxApEDUqkQciBZpIAVuoEICibLUffPCBq33TpIRv77zzTrLLLrs4LQp+KrbwYJPG2UQ+jWOKFOiGAtH00w2V4j2RAjWjgDQoEtTWefbCCy9Mxo4dm7zxxhvJT3/6U1cLp24v+v36668nr776anL44Ycnd955ZzpDMgnV2QenZuwWuxspUCgF/n8oZeIsimNpBwAAAABJRU5ErkJggg==" alt="" width="462" height="310" />

分析

  这是个纯模拟,感觉没有什么要分析的

  主要就是要多注意细节,考场上少写了一句代码,直接掉到了 $45.5$ 分

  而且每次一写模拟就写得贼慢

//考场上写得有点繁琐
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 10005 int T, n, c = , now = , s, e, ok, g1, g2;
int q[], g[N], book[], sum[]; int main() {
scanf("%d", &T);
for (int i = ; i <= T; i++) {
scanf("%d", q + i);
n = max(n, q[i]);
}
g[] = ; g[] = ; g[] = ;
g[] = ; g[] = ; g[] = ; g[] = ;
sum[] = sum[] = sum[] = ;
sum[] = sum[] = ; sum[] = inf;
s = ; e = ;
while (++c) {
for (int i = ; i <= ; i++) {
for (int j = ; j < c; j++) {
memset(book, , sizeof book);
int minsum = inf;
if (j != c - ) {
if (now == e + ) {
book[g[s]] = book[g[e]] = ;
for (int k = ; k <= ; k++)
if (!book[k])
minsum = min(minsum, sum[k]);
for (int k = ; k <= ; k++)
if (!book[k] && sum[k] == minsum) {
g[now++] = k; sum[k]++; break;
}
g1 = s; g2 = s + ; s = e + ;
}
else {
book[g[g1]] = book[g[g2]] = book[g[now - ]] = ;
for (int k = ; k <= ; k++)
if (!book[k])
minsum = min(minsum, sum[k]);
for (int k = ; k <= ; k++)
if (!book[k] && sum[k] == minsum) {
g[now++] = k; sum[k]++; break;
}
g1++; g2++;
}
}
else {
if (i == ) e = now, book[g[s]] = ;
book[g[g1]] = book[g[now - ]] = ;
for (int k = ; k <= ; k++)
if (!book[k])
minsum = min(minsum, sum[k]);
for (int k = ; k <= ; k++)
if (!book[k] && sum[k] == minsum) {
g[now++] = k; sum[k]++; break;
}
}
if (now > n) {
ok = ; break;
}
}
if (ok) break;
}
if (ok) break;
}
for (int i = ; i <= T; i++)
printf("%d\n", g[q[i]]); return ;
}

T3 [JZOJ2644] 数列

题目描述

  给你一个长度为N的正整数序列,如果一个连续的子序列,子序列的和能够被K整除,那么就视此子序列合法,求原序列包括多少个合法的连续子序列?

分析

  看到题目就先写了前缀和枚举区间 $O(n^2)$ 暴力 $30 \, pts$

  当时看了半天觉得这是最可做的一题,结果看了数据范围还是没想出来 $O(n \, log \, n)$ 做法

  结果考完试下午看了下大家的讨论,发现正解是 $O(k)$

  具体就是把每个前缀和按 $k$ 取模,记录每个余数出现的次数 $sum$

  显然,前缀和所得余数相同的的两项之间的区间和,一定能被 $k$ 整除

  所以在余数相同的项中,我们可以任意挑选两项组成一个合法区间

  因此答案为 $\sum\limits_{i=0}^{k-1} \binom{sum[i]}{2}$

  要注意,第 $0$ 项的前缀和余数视为 $0$

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
#define ll long long
#define N 50005
#define K 1000005 int T, n, k, x;
int pre[N], sum[K];
ll ans, c[K]; int main() {
c[] = ;
for (int i = ; i <= N; i++)
c[i] = c[i - ] + i - ;
scanf("%d", &T);
while (T--) {
ans = ;
scanf("%d%d", &k, &n);
for (int i = ; i <= k; i++) sum[i] = ;
sum[] = ;
for (int i = ; i <= n; i++) {
scanf("%d", &x);
pre[i] = (pre[i - ] + x) % k;
sum[pre[i]]++;
}
for (int i = ; i < k; i++)
ans += c[sum[i]];
printf("%lld\n", ans);
} return ;
}

2019-08-01 纪中NOIP模拟B组的更多相关文章

  1. 2019-08-21 纪中NOIP模拟A组

    T1 [JZOJ6315] 数字 题目描述

  2. 2019-08-15 纪中NOIP模拟B组

    T1 [JZOJ3455] 库特的向量 题目描述 从前在一个美好的校园里,有一只(棵)可爱的弯枝理树.她内敛而羞涩,一副弱气的样子让人一看就想好好疼爱她.仅仅在她身边,就有许多女孩子想和她BH,比如铃 ...

  3. 2019-08-25 纪中NOIP模拟A组

    T1 [JZOJ6314] Balancing Inversions 题目描述 Bessie 和 Elsie 在一个长为 2N 的布尔数组 A 上玩游戏. Bessie 的分数为 A 的前一半的逆序对 ...

  4. 2019-08-23 纪中NOIP模拟A组

    T1 [JZOJ2908] 矩阵乘法 题目描述 给你一个 N*N 的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第 K 小数. 数据范围 对于 $20\%$ 的数据,$N \leq 100$,$Q ...

  5. 2019-08-20 纪中NOIP模拟B组

    T1 [JZOJ3490] 旅游(travel) 题目描述 ztxz16如愿成为码农之后,整天的生活除了写程序还是写程序,十分苦逼.终于有一天,他意识到自己的生活太过平淡,于是决定外出旅游丰富阅历. ...

  6. 2019-08-20 纪中NOIP模拟A组

    T1 [JZOJ6310] Global warming 题目描述 给定整数 n 和 x,以及一个大小为 n 的序列 a. 你可以选择一个区间 [l,r],然后令 a[i]+=d(l<=i< ...

  7. 2019-08-18 纪中NOIP模拟A组

    T1 [JZOJ6309] 完全背包 题目描述

  8. 2019-08-09 纪中NOIP模拟B组

    T1 [JZOJ1035] 粉刷匠 题目描述 windy有N条木板需要被粉刷. 每条木板被分为M个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一 ...

  9. 2019-08-17 纪中NOIP模拟B组

    T1 [JZOJ3503] 粉刷 题目描述 鸡腿想到了一个很高(sha)明(bi)的问题,墙可以看作一个N*M的矩阵,有一些格子是有污点的.现在鸡腿可以竖着刷一次,覆盖连续的最多C列,或者横着刷一次, ...

随机推荐

  1. C#MVC用ZXing.Net生成二维码/条形码

    开篇:zxing.net是.net平台下编解条形码和二维码的工具. 首先创建新项目 选择MVC模板  添加一个控制器  在项目引用中的引用ZXing 进行联网下载 控制器需要引用 后台控制器   pu ...

  2. 记一次mysql的问题处理@20181225

    需求:由于某种原因,导致一次分库分表的环境中ddl添加字段和索引没有完全成功,比如100个分库,只有部分修改成功,需要将没有修改成功的库和表找出来,在手动去执行. 由于线上环境,这里模拟还原一下该问题 ...

  3. [PAT] A1021 Deepest Root

    [题目大意] 给出n个结点和n-1条边,问它们能否形成一棵n个结点的树,如果能,从中选出结点作为树根,使整棵树的高度最大.输出所有满足要求的可以作为树根的结点. [思路] 方法一:模拟. 1 连通.边 ...

  4. sqli-labs11-17(手注+sqlmap)

    这几关涉及到的都是post型data处注入,和get型的差别就是注入点的测试处不一样,方法都是一样的 0x01 sqli-labs less-11 1.手工 由于是post型注入,那么我们不能在url ...

  5. 51Nod 1183 编辑距离 (字符串相似算法)

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  6. Linux c++ 转string模板函数,写文件

    #include <iostream> #include <sstream> using namespace std;//转string模板函数 template <cl ...

  7. poj1141题解

    题意 空序列是规则序列:用小括号(或者方括号)把一个规则序列括起来依然是规则序列:两个规则序列并列在一起仍然是规则序列. 给出一个括号字符串S,求一个规则序列ANS,满足S是ANS的子序列且ans尽可 ...

  8. Mysql快速入门(二)

    多表关联查询 JOIN 按照功能大致分为如下三类: CROSS JOIN(交叉连接) INNER JOIN(内连接或等值连接). OUTER JOIN(外连接) 交叉连接 交叉连接的关键字:CROSS ...

  9. LaTeX技巧006:使用pdfLaTeX时,添加PDF文件属性的方法

    PDF文件中含有标题.主题.作者.关键字等属性.这些属性,在Acrobat Reader或者Foxit Reader中可以通过”文件”菜单下的”属性”查看,在Acrobat Read中还可以使用Ctr ...

  10. Codeforces 577A - Multiplication Table

    Let's consider a table consisting of n rows and n columns. The cell located at the intersection of i ...