import glob
import os.path
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import tensorflow.contrib.slim as slim # 因为slim.nets包在 tensorflow 1.3 中有一些问题,所以这里为了方便
# 我们将slim.nets.inception_v3中的代码拷贝到了同一个文件夹下。
# import inception_v3 # 加载通过TensorFlow-Slim定义好的inception_v3模型。
import tensorflow.contrib.slim.python.slim.nets.inception_v3 as inception_v3 # 处理好之后的数据文件。
INPUT_DATA = 'E\\flower_processed_data\\flower_processed_data.npy'
# 保存训练好的模型的路径。这里我们可以将使用新数据训练得到的完整模型保存
# 下来,如果计算资源充足,我们还可以在训练完最后的全联接层之后再训练所有
# 网络层,这样可以使得新模型更加贴近新数据。
TRAIN_FILE = 'E\\train_dir\\model'
# 谷歌提供的训练好的模型文件地址。
CKPT_FILE = 'E:\\inception_v3\\inception_v3.ckpt' # 定义训练中使用的参数。
LEARNING_RATE = 0.01
STEPS = 5000
BATCH = 128
N_CLASSES = 5 # 不需要从谷歌训练好的模型中加载的参数。这里就是最后的全联接层,因为在
# 新的问题中我们要重新训练这一层中的参数。这里给出的是参数的前缀。
CHECKPOINT_EXCLUDE_SCOPES = 'InceptionV3/Logits,InceptionV3/AuxLogits'
# 需要训练的网络层参数明层,在fine-tuning的过程中就是最后的全联接层。
# 这里给出的是参数的前缀。
TRAINABLE_SCOPES='InceptionV3/Logits' # 获取所有需要从谷歌训练好的模型中加载的参数。
def get_tuned_variables():
exclusions = [scope.strip() for scope in CHECKPOINT_EXCLUDE_SCOPES.split(',')] variables_to_restore = []
# 枚举inception-v3模型中所有的参数,然后判断是否需要从加载列表中
# 移除。
for var in slim.get_model_variables():
print var.op.name
excluded = False
for exclusion in exclusions:
if var.op.name.startswith(exclusion):
excluded = True
break
if not excluded:
variables_to_restore.append(var)
return variables_to_restore # 获取所有需要训练的变量列表。
def get_trainable_variables():
scopes = [scope.strip() for scope in TRAINABLE_SCOPES.split(',')]
variables_to_train = []
# 枚举所有需要训练的参数前缀,并通过这些前缀找到所有的参数。
for scope in scopes:
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
return variables_to_train def main():
# 加载预处理好的数据。
processed_data = np.load(INPUT_DATA)
training_images = processed_data[0]
n_training_example = len(training_images)
training_labels = processed_data[1]
validation_images = processed_data[2]
validation_labels = processed_data[3]
testing_images = processed_data[4]
testing_labels = processed_data[5] # 定义inception-v3的输入,images为输入图片,labels为每一张图片
# 对应的标签。
images = tf.placeholder(tf.float32, [None, 299, 299, 3], name='input_images')
labels = tf.placeholder(tf.int64, [None], name='labels') # 定义inception-v3模型。因为谷歌给出的只有模型参数取值,所以这里
# 需要在这个代码中定义inception-v3的模型结构。因为模型
# 中使用到了dropout,所以需要定一个训练时使用的模型,一个测试时
# 使用的模型。
with slim.arg_scope(inception_v3.inception_v3_arg_scope()):
train_logits, _ = inception_v3.inception_v3(
images, num_classes=N_CLASSES, is_training=True)
# 定义测试使用的模型时需要将reuse设置为True。
test_logits, _ = inception_v3.inception_v3(
images, num_classes=N_CLASSES, is_training=False, reuse=True) trainable_variables = get_trainable_variables()
print(trainable_variables) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=train_logits, labels=tf.one_hot(labels, N_CLASSES))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean,var_list=trainable_variables) # 计算正确率。
with tf.name_scope('evaluation'):
correct_prediction = tf.equal(tf.argmax(test_logits, 1), labels)
evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
loader = tf.train.Saver(get_tuned_variables())
saver = tf.train.Saver()
with tf.variable_scope("InceptionV3", reuse = True):
check1 = tf.get_variable("Conv2d_1a_3x3/weights")
check2 = tf.get_variable("Logits/Conv2d_1c_1x1/weights") with tf.Session() as sess:
# 初始化没有加载进来的变量。
init = tf.global_variables_initializer()
sess.run(init)
print sess.run(check1)
print sess.run(check2) # 加载谷歌已经训练好的模型。
print('Loading tuned variables from %s' % CKPT_FILE)
loader.restore(sess, CKPT_FILE)
start = 0
end = BATCH
for i in range(STEPS):
print sess.run(check1)
print sess.run(check2)
_, loss = sess.run([train_step, cross_entropy_mean], feed_dict={images: training_images[start:end], labels: training_labels[start:end]})
if i % 100 == 0 or i + 1 == STEPS:
saver.save(sess, TRAIN_FILE, global_step=i)
validation_accuracy = sess.run(evaluation_step, feed_dict={
images: validation_images, labels: validation_labels})
print('Step %d: Training loss is %.1f%% Validation accuracy = %.1f%%' % (i, loss * 100.0, validation_accuracy * 100.0))
start = end
if start == n_training_example:
start = 0
end = start + BATCH
if end > n_training_example:
end = n_training_example # 在最后的测试数据上测试正确率。
test_accuracy = sess.run(evaluation_step, feed_dict={images: test_images, labels: test_labels})
print('Final test accuracy = %.1f%%' % (test_accuracy * 100)) if __name__ == '__main__':
main()

吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(3)的更多相关文章

  1. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(4)

    # -*- coding: utf-8 -*- import glob import os.path import numpy as np import tensorflow as tf from t ...

  2. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(2)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  3. 吴裕雄 python 神经网络——TensorFlow 花瓣分类与迁移学习(1)

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  4. 吴裕雄 python 神经网络——TensorFlow 花瓣识别2

    import glob import os.path import numpy as np import tensorflow as tf from tensorflow.python.platfor ...

  5. 吴裕雄 python 神经网络——TensorFlow训练神经网络:花瓣识别

    import os import glob import os.path import numpy as np import tensorflow as tf from tensorflow.pyth ...

  6. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

  7. 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集

    import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...

  8. 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集

    # 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...

  9. 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集

    import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...

随机推荐

  1. wamp 安装

    下载地址:http://www.wampserver.com/ 安装 完成安装 安装目录下打开 安装成功

  2. jenkins pipline 几个注意细节

    新建jenkins pipline 1)pipeline的脚本语法要正确,sonarqube的projectKey需要做相应的修改 2)先执行一次构建,会报错 3)进到jenkins workspac ...

  3. doGet与doPost简单理解

    get和post是http协议的两种方法 这两种方法有着本质的区别,get只有一个流,参数附加在url后,大小个数有严格限制且只能是字符串.Post的参数是通过另外的流传递,不通过url,所以可以很大 ...

  4. 【转载】Java反射机制详解

    转自:http://baike.xsoftlab.net/view/209.html#3_8 1反射机制是什么 反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对 ...

  5. MFC单文档视图中嵌入GLFW窗口

    开始学习OpenGL由于有一段时间,但是glfw只有窗口区,虽然通过某种手段(移步这里)可以加入工具栏,但仍然无法作为一个标准的GUI,而直接在MFC或Qt里面使用OpenGL API感觉有诸多制肘, ...

  6. python正则非贪婪模式

    上一篇python正则匹配次数大家应该也发现了,除了?其他匹配次数规则都是尽可能多的匹配 那如果只想匹配1次怎么办呢,这就是正则中非贪婪模式的概念了 原理就是利用?与其他匹配次数规则进行组合 单个匹配 ...

  7. ubuntu14.04安装google chrome

    安装好Ubuntu14.04之后安装google chrome浏览器 1.按下 Ctrl + Alt + t 键盘组合键,启动终端 2.在终端中,输入以下命令 (将下载源加入到系统的源列表.命令的反馈 ...

  8. [lua]紫猫lua教程-命令宝典-L1-01-05. if判断结构

    L1[if]01. 简单的if判断结构 没什么说得 if得基本结构如下 xxx= ) then testlib.traceprint("1-100") ) then testlib ...

  9. Go键盘输入和打印输出

    package main import ( "fmt" "bufio" "os" ) func main() { /* 输入和输出: fmt ...

  10. asp.net 大文件上传配置

    <system.web> <httpRuntime requestValidationMode=" ></httpRuntime> <!--单位:K ...