数据结构(集合)学习之Map(一)
集合
框架关系图:
补充:HashTable父类是Dictionary,不是AbstractMap。
Map:
Map(接口)和Collection都属于集合,但是Map不是Collection的子类或者子接口。而且Map比较特殊:它是以<key,value>键值对的方式来存储数据,其中key不能重复,且一个key最多只对应一个value。
Map在面试中常问的三个子类:HashMap、HashTable、TreeMap。
HashMap:
基于哈希表的实现的Map接口, 该实现提供了所有可选的映射操作,并允许null的key和null的value。
在JDK1.8以前,HashMap底层是:"链表+数组"结构;在JDK1.8时,对HashMap底层进行优化,成了:数组+链表+红黑树。
JDK1.6:初始容量为16,加载因子为0.75,底层是Entry数组加链表结构:
- //初始容量
- static final int DEFAULT_INITIAL_CAPACITY = 16;
- //加载因子
- static final float DEFAULT_LOAD_FACTOR = 0.75f;
- //存储容器-数组
- transient Entry[] table;
- //静态内部类
- static class Entry<K,V> implements Map.Entry<K,V> {
- final K key;
- V value;
- Entry<K,V> next;//把key和value转换成数组中的Entry对象
- final int hash;
- /**
- * Creates new entry.
- */
- Entry(int h, K k, V v, Entry<K,V> n) {
- value = v;
- next = n;
- key = k;
- hash = h;
- }
- public final K getKey() {
- return key;
- }
- public final V getValue() {
- return value;
- }
- public final V setValue(V newValue) {
- V oldValue = value;
- value = newValue;
- return oldValue;
- }
- public final boolean equals(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry e = (Map.Entry)o;
- Object k1 = getKey();
- Object k2 = e.getKey();
- if (k1 == k2 || (k1 != null && k1.equals(k2))) {
- Object v1 = getValue();
- Object v2 = e.getValue();
- if (v1 == v2 || (v1 != null && v1.equals(v2)))
- return true;
- }
- return false;
- }
- public final int hashCode() {
- return (key==null ? 0 : key.hashCode()) ^
- (value==null ? 0 : value.hashCode());
- }
- public final String toString() {
- return getKey() + "=" + getValue();
- }
- void recordAccess(HashMap<K,V> m) {
- }
- void recordRemoval(HashMap<K,V> m) {
- }
- }
- //Put方法
- public V put(K key, V value) {
- if (key == null)
- return putForNullKey(value);//hashmap可以存key==null
- int hash = hash(key.hashCode());//根据key的hashcode计算一个哈希数
- int i = indexFor(hash, table.length);//根据计算的哈希数获取数组的坐标
- for (Entry<K,V> e = table[i]; e != null; e = e.next) {//hashmap不允许重复,如果key重复了,把新的value替换老的value
- Object k;
- if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {//
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- modCount++;
- addEntry(hash, key, value, i);//处理好以后把hash,key,value,index添加到数组中去
- return null;
- }
- //针对key=null的方法
- private V putForNullKey(V value) {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- modCount++;
- addEntry(0, null, value, 0);
- return null;
- }
- //获取哈希数
- static int hash(int h) {
- // This function ensures that hashCodes that differ only by
- // constant multiples at each bit position have a bounded
- // number of collisions (approximately 8 at default load factor).
- h ^= (h >>> 20) ^ (h >>> 12);
- return h ^ (h >>> 7) ^ (h >>> 4);
- }
- //获取数组坐标
- static int indexFor(int h, int length) {
- return h & (length-1);
- }
- //添加元素的方法
- void addEntry(int hash, K key, V value, int bucketIndex) {
- Entry<K,V> e = table[bucketIndex];//如果index相同了(哈希碰撞),把原来的值给一个新的Entry对象
- //然后把新来的值存在数组中,老值作为新值的下标(next对象),在此也体现了hashmap的“链式结构”
- table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
- if (size++ >= threshold)
- resize(2 * table.length);//如果数值超容了,进行扩容:数组的长度*2(默认初始容量16,所以为16*2=32)
- }
- //扩容方法
- void resize(int newCapacity) {//2倍长度作为参数传入
- Entry[] oldTable = table;
- int oldCapacity = oldTable.length;
- if (oldCapacity == MAXIMUM_CAPACITY) {
- threshold = Integer.MAX_VALUE;
- return;
- }
- Entry[] newTable = new Entry[newCapacity];//新建数组
- transfer(newTable);//数组值转换的方法
- table = newTable;
- threshold = (int)(newCapacity * loadFactor);
- }
- //数组值转换的方法
- void transfer(Entry[] newTable) {
- Entry[] src = table;
- int newCapacity = newTable.length;
- for (int j = 0; j < src.length; j++) {
- Entry<K,V> e = src[j];
- if (e != null) {
- src[j] = null;
- do {//此处为复制的过程
- Entry<K,V> next = e.next;
- int i = indexFor(e.hash, newCapacity);
- e.next = newTable[i];
- newTable[i] = e;
- e = next;
- } while (e != null);
- }
- }
- }
- //Get方法
- public V get(Object key) {
- if (key == null)
- return getForNullKey();//遍历,获取到key==null的值
- int hash = hash(key.hashCode());//然后根据key获取哈希值
- for (Entry<K,V> e = table[indexFor(hash, table.length)];//然后获取坐标得到Entry对象
- e != null;
- e = e.next) {//从第一个开始遍历,如果不是,把Entry对象的下标给Entry然后比较
- Object k;
- if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
- return e.value;//当哈希值和key都相等的时候,把value返回去
- }
- return null;
- }
- //key等于null获取值
- private V getForNullKey() {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null)
- return e.value;
- }
- return null;
- }
- //Clear方法
- public void clear() {
- modCount++;
- Entry[] tab = table;
- for (int i = 0; i < tab.length; i++)//遍历数组,把值清空,把size置为0
- tab[i] = null;
- size = 0;
- }
- //entrySet方法:获取到数组中Entry对象的Set集合
- private transient Set<Map.Entry<K,V>> entrySet = null;
- public Set<Map.Entry<K,V>> entrySet() {
- return entrySet0();
- }
- private Set<Map.Entry<K,V>> entrySet0() {
- Set<Map.Entry<K,V>> es = entrySet;
- return es != null ? es : (entrySet = new EntrySet());
- }
- //原理就是迭代map中的Entry对象
- private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
- public Iterator<Map.Entry<K,V>> iterator() {
- return newEntryIterator();
- }
- public boolean contains(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry<K,V> e = (Map.Entry<K,V>) o;
- Entry<K,V> candidate = getEntry(e.getKey());
- return candidate != null && candidate.equals(e);
- }
- public boolean remove(Object o) {
- return removeMapping(o) != null;
- }
- public int size() {
- return size;
- }
- public void clear() {
- HashMap.this.clear();
- }
- }
- final Entry<K,V> nextEntry() {
- if (modCount != expectedModCount)
- throw new ConcurrentModificationException();
- Entry<K,V> e = next;
- if (e == null)
- throw new NoSuchElementException();
- if ((next = e.next) == null) {
- Entry[] t = table;
- while (index < t.length && (next = t[index++]) == null) ;
- }
- current = e;
- return e;
- }
- //keySet方法
- public Set<K> keySet() {
- Set<K> ks = keySet;
- return (ks != null ? ks : (keySet = new KeySet()));
- }
- //原理也是通过迭代器,迭代Entry对象,然后获取key
- private final class KeySet extends AbstractSet<K> {
- public Iterator<K> iterator() {
- return newKeyIterator();
- }
- public int size() {
- return size;
- }
- public boolean contains(Object o) {
- return containsKey(o);
- }
- public boolean remove(Object o) {
- return HashMap.this.removeEntryForKey(o) != null;
- }
- public void clear() {
- HashMap.this.clear();
- }
- }
- private final class KeyIterator extends HashIterator<K> {
- public K next() {
- return nextEntry().getKey();
- }
- }
- //remove方法
- public V remove(Object key) {
- Entry<K,V> e = removeEntryForKey(key);
- return (e == null ? null : e.value);
- }
- final Entry<K,V> removeEntryForKey(Object key) {
- int hash = (key == null) ? 0 : hash(key.hashCode());
- int i = indexFor(hash, table.length);
- Entry<K,V> prev = table[i];
- Entry<K,V> e = prev;
- while (e != null) {//用while循环,当哈希值和key都相等的时候把值得next赋值给现在位置的值
- Entry<K,V> next = e.next;
- Object k;
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k)))) {
- modCount++;
- size--;
- if (prev == e)
- table[i] = next;
- else
- prev.next = next;
- e.recordRemoval(this);
- return e;
- }
- prev = e;
- e = next;
- }
- return e;
- }
- //size方法和isEmpty方法
- transient int size;//和put以及remove方法有关系,增加就++,删除就--
- public int size() {
- return size;
- }
- public boolean isEmpty() {
- return size == 0;
- }
- //contains方法
- public boolean contains(Object o) {
- return containsKey(o);
- }
- public boolean containsKey(Object key) {
- return getEntry(key) != null;
- }
- final Entry<K,V> getEntry(Object key) {
- if (size == 0) {
- return null;
- }
- int hash = (key == null) ? 0 : hash(key);
- for (Entry<K,V> e = table[indexFor(hash, table.length)];
- e != null;
- e = e.next) {
- Object k;
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k))))
- return e;
- }
- return null;
- }
补充1:
哈希表(Hash table,采用散列技术将记录存储在一块连续的存储空间中,这块连续存储空间称为散列表或哈希表(Hash table)),是根据关键码值(Key value)而直接进行访问的数据结构,也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。
记录的存储位置=f(关键字),被称为散列函数,又称为哈希(Hash函数),
补充二:
两个对象相等,hashCode一定相同,但是两个对象的HashCode相同,这两个对象不一定相等。
JDK1.7源码(和1.6的对比):
- //对比一:1.7默认初始容量用了位移计算
- static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
- //加载因子
- static final float DEFAULT_LOAD_FACTOR = 0.75f;
- //存储容器-数组
- static final Entry<?,?>[] EMPTY_TABLE = {};
- transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
- //静态内部类
- static class Entry<K,V> implements Map.Entry<K,V> {
- final K key;
- V value;
- Entry<K,V> next;
- int hash;
- /**
- * Creates new entry.
- */
- Entry(int h, K k, V v, Entry<K,V> n) {
- value = v;
- next = n;
- key = k;
- hash = h;
- }
- public final K getKey() {
- return key;
- }
- public final V getValue() {
- return value;
- }
- public final V setValue(V newValue) {
- V oldValue = value;
- value = newValue;
- return oldValue;
- }
- public final boolean equals(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry e = (Map.Entry)o;
- Object k1 = getKey();
- Object k2 = e.getKey();
- if (k1 == k2 || (k1 != null && k1.equals(k2))) {
- Object v1 = getValue();
- Object v2 = e.getValue();
- if (v1 == v2 || (v1 != null && v1.equals(v2)))
- return true;
- }
- return false;
- }
- public final int hashCode() {
- return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
- }
- public final String toString() {
- return getKey() + "=" + getValue();
- }
- /**
- * This method is invoked whenever the value in an entry is
- * overwritten by an invocation of put(k,v) for a key k that's already
- * in the HashMap.
- */
- void recordAccess(HashMap<K,V> m) {
- }
- /**
- * This method is invoked whenever the entry is
- * removed from the table.
- */
- void recordRemoval(HashMap<K,V> m) {
- }
- }
- //Put方法
- public V put(K key, V value) {
- if (table == EMPTY_TABLE) {//此出多了一个数组初始化的方法
- inflateTable(threshold);
- }
- if (key == null)
- return putForNullKey(value);
- int hash = hash(key);
- int i = indexFor(hash, table.length);
- for (Entry<K,V> e = table[i]; e != null; e = e.next) {
- Object k;
- if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- modCount++;
- addEntry(hash, key, value, i);
- return null;
- }
- //初始化数组
- private void inflateTable(int toSize) {
- int capacity = roundUpToPowerOf2(toSize); // 此处把传入的数组容量向上转换为2的n次幂的数值
- threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
- table = new Entry[capacity];
- initHashSeedAsNeeded(capacity);
- }
- final boolean initHashSeedAsNeeded(int capacity) {
- boolean currentAltHashing = hashSeed != 0;
- boolean useAltHashing = sun.misc.VM.isBooted() &&
- (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
- boolean switching = currentAltHashing ^ useAltHashing;
- if (switching) {
- hashSeed = useAltHashing
- ? sun.misc.Hashing.randomHashSeed(this)
- : 0;
- }
- return switching;
- }
- //针对key=null的方法
- private V putForNullKey(V value) {
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null) {
- V oldValue = e.value;
- e.value = value;
- e.recordAccess(this);
- return oldValue;
- }
- }
- modCount++;
- addEntry(0, null, value, 0);
- return null;
- }
- //获取哈希数
- final int hash(Object k) {
- int h = hashSeed;
- if (0 != h && k instanceof String) {
- return sun.misc.Hashing.stringHash32((String) k);
- }
- h ^= k.hashCode();
- h ^= (h >>> 20) ^ (h >>> 12);
- return h ^ (h >>> 7) ^ (h >>> 4);
- }
- //获取数组坐标
- static int indexFor(int h, int length) {
- // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
- return h & (length-1);
- }
- //添加元素的方法
- void addEntry(int hash, K key, V value, int bucketIndex) {
- if ((size >= threshold) && (null != table[bucketIndex])) {//1.7这里先进行是否需要扩容的判断
- resize(2 * table.length);
- hash = (null != key) ? hash(key) : 0;
- bucketIndex = indexFor(hash, table.length);
- }
- createEntry(hash, key, value, bucketIndex);
- }
- //扩容方法
- void resize(int newCapacity) {
- Entry[] oldTable = table;
- int oldCapacity = oldTable.length;
- if (oldCapacity == MAXIMUM_CAPACITY) {
- threshold = Integer.MAX_VALUE;
- return;
- }
- Entry[] newTable = new Entry[newCapacity];
- transfer(newTable, initHashSeedAsNeeded(newCapacity));
- table = newTable;
- threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
- }
- //数组值转换的方法
- void transfer(Entry[] newTable, boolean rehash) {
- int newCapacity = newTable.length;
- for (Entry<K,V> e : table) {
- while(null != e) {
- Entry<K,V> next = e.next;
- if (rehash) {
- e.hash = null == e.key ? 0 : hash(e.key);
- }
- int i = indexFor(e.hash, newCapacity);
- e.next = newTable[i];
- newTable[i] = e;
- e = next;
- }
- }
- }
- //添加元素的方法
- void createEntry(int hash, K key, V value, int bucketIndex) {
- Entry<K,V> e = table[bucketIndex];
- table[bucketIndex] = new Entry<>(hash, key, value, e);
- size++;
- }
- //Get方法
- public V get(Object key) {
- if (key == null)
- return getForNullKey();
- Entry<K,V> entry = getEntry(key);
- return null == entry ? null : entry.getValue();
- }
- //key等于null获取值
- private V getForNullKey() {
- if (size == 0) {//1.7在此处又多了个判断数组是否为空的情况
- return null;
- }
- for (Entry<K,V> e = table[0]; e != null; e = e.next) {
- if (e.key == null)
- return e.value;
- }
- return null;
- }
- //Clear方法
- public void clear() {
- modCount++;
- Arrays.fill(table, null);//1,7此处调用了Arrays中的方法,不过原理还是一样的
- size = 0;
- }
- public static void fill(Object[] a, Object val) {
- for (int i = 0, len = a.length; i < len; i++)
- a[i] = val;
- }
- //entrySet方法:获取到数组中Entry对象的Set集合
- private transient Set<Map.Entry<K,V>> entrySet = null;
- public Set<Map.Entry<K,V>> entrySet() {
- return entrySet0();
- }
- private Set<Map.Entry<K,V>> entrySet0() {
- Set<Map.Entry<K,V>> es = entrySet;
- return es != null ? es : (entrySet = new EntrySet());
- }
- //原理就是迭代map中的Entry对象
- private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
- public Iterator<Map.Entry<K,V>> iterator() {
- return newEntryIterator();
- }
- public boolean contains(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry<K,V> e = (Map.Entry<K,V>) o;
- Entry<K,V> candidate = getEntry(e.getKey());
- return candidate != null && candidate.equals(e);
- }
- public boolean remove(Object o) {
- return removeMapping(o) != null;
- }
- public int size() {
- return size;
- }
- public void clear() {
- HashMap.this.clear();
- }
- }
- //keySet方法
- public Set<K> keySet() {
- Set<K> ks = keySet;
- return (ks != null ? ks : (keySet = new KeySet()));
- }
- //原理也是通过迭代器,迭代Entry对象,然后获取key
- private final class KeySet extends AbstractSet<K> {
- public Iterator<K> iterator() {
- return newKeyIterator();
- }
- public int size() {
- return size;
- }
- public boolean contains(Object o) {
- return containsKey(o);
- }
- public boolean remove(Object o) {
- return HashMap.this.removeEntryForKey(o) != null;
- }
- public void clear() {
- HashMap.this.clear();
- }
- }
- //remove方法
- public V remove(Object key) {
- Entry<K,V> e = removeEntryForKey(key);
- return (e == null ? null : e.value);
- }
- final Entry<K,V> removeEntryForKey(Object key) {
- if (size == 0) {
- return null;
- }
- int hash = (key == null) ? 0 : hash(key);
- int i = indexFor(hash, table.length);
- Entry<K,V> prev = table[i];
- Entry<K,V> e = prev;
- while (e != null) {
- Entry<K,V> next = e.next;
- Object k;
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k)))) {
- modCount++;
- size--;
- if (prev == e)
- table[i] = next;
- else
- prev.next = next;
- e.recordRemoval(this);
- return e;
- }
- prev = e;
- e = next;
- }
- return e;
- }
- //size方法、isEmpty方法、contains方法
- public int size() {
- return size;
- }
- public boolean isEmpty() {
- return size == 0;
- }
- public boolean contains(Object o) {
- return containsKey(o);
- }
- public boolean containsKey(Object key) {
- return getEntry(key) != null;
- }
- final Entry<K,V> getEntry(Object key) {
- if (size == 0) {
- return null;
- }
- int hash = (key == null) ? 0 : hash(key);
- for (Entry<K,V> e = table[indexFor(hash, table.length)];
- e != null;
- e = e.next) {
- Object k;
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k))))
- return e;
- }
- return null;
- }
对比可以看出,1.6和1.7重要方法的原理基本没变,1.7在部分方法上做了一点小的优化,还有就是从1.7开始,创建无参hashmap时不直接生成数组了,采用懒加载的方式,在用的时候再初始化。
1.6无参构造函数:
- public HashMap() {
- this.loadFactor = DEFAULT_LOAD_FACTOR;
- threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
- table = new Entry[DEFAULT_INITIAL_CAPACITY];
- init();
- }
1.7无参构造函数(在Put方法中,判断table等于空的时候再创建):
- public HashMap() {
- this.loadFactor = DEFAULT_LOAD_FACTOR;
- }
HashMap1.8:初始容量为16,加载因子为0.75,底层是Entry数组+链表+红黑树:
- //初始容量
- static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
- //加载因子
- static final float DEFAULT_LOAD_FACTOR = 0.75f;
- //转为红黑树的阈(yu)值
- static final int TREEIFY_THRESHOLD = 8;
- //从红黑树转换为链表的阈值(扩容会重新计算一次数据长度)
- static final int UNTREEIFY_THRESHOLD = 6;
- //默认红黑树的容量
- static final int MIN_TREEIFY_CAPACITY = 64;
- //存储容器-数组,由1.7的Entry<K,V>[]数组变为了Node<K,V>[]
- transient Node<K,V>[] table;
- static class Node<K,V> implements Map.Entry<K,V> {
- final int hash;
- final K key;
- V value;
- Node<K,V> next;
- Node(int hash, K key, V value, Node<K,V> next) {
- this.hash = hash;
- this.key = key;
- this.value = value;
- this.next = next;
- }
- public final K getKey() { return key; }
- public final V getValue() { return value; }
- public final String toString() { return key + "=" + value; }
- public final int hashCode() {
- return Objects.hashCode(key) ^ Objects.hashCode(value);
- }
- public final V setValue(V newValue) {
- V oldValue = value;
- value = newValue;
- return oldValue;
- }
- public final boolean equals(Object o) {
- if (o == this)
- return true;
- if (o instanceof Map.Entry) {
- Map.Entry<?,?> e = (Map.Entry<?,?>)o;
- if (Objects.equals(key, e.getKey()) &&
- Objects.equals(value, e.getValue()))
- return true;
- }
- return false;
- }
- }
- //Put方法
- public V put(K key, V value) {
- return putVal(hash(key), key, value, false, true);
- }
- final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
- boolean evict) {
- Node<K,V>[] tab; Node<K,V> p; int n, i;
- if ((tab = table) == null || (n = tab.length) == 0)
- n = (tab = resize()).length;//首先还是先判断数组是否为空的,是的话进行初始化
- if ((p = tab[i = (n - 1) & hash]) == null)//如果数组该位置为空,则把key,value传入该位置
- tab[i] = newNode(hash, key, value, null);
- else {//走到这说明发生了哈希碰撞,计算的key的哈希值相同
- Node<K,V> e; K k;
- if (p.hash == hash &&
- ((k = p.key) == key || (key != null && key.equals(k))))//先比较数据是否重复,重复的话就新值替换旧值
- e = p;
- else if (p instanceof TreeNode)//判断该对象是不是红黑树的元素,是的话直接存入红黑树
- e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
- else {
- for (int binCount = 0; ; ++binCount) {//遍历链表上的元素
- if ((e = p.next) == null) {
- p.next = newNode(hash, key, value, null);
- if (binCount >= TREEIFY_THRESHOLD - 1) // 如果数量达到临界点,则转换为红黑树
- treeifyBin(tab, hash);//转换方法
- break;
- }
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k))))
- break;
- p = e;//e其实是p.next,此处体现1.8的尾插法
- }
- }
- if (e != null) { // 此处作用为,当key相同时,新value替换老的value,并将oleValue返回出去
- V oldValue = e.value;
- if (!onlyIfAbsent || oldValue == null)
- e.value = value;
- afterNodeAccess(e);
- return oldValue;
- }
- }
- ++modCount;
- if (++size > threshold)//如果数组大于初始量*加载因子,则进行扩容
- resize();
- afterNodeInsertion(evict);
- return null;
- }
- //空数组初始化方法
- final Node<K,V>[] resize() {
- Node<K,V>[] oldTab = table;
- int oldCap = (oldTab == null) ? 0 : oldTab.length;
- int oldThr = threshold;
- int newCap, newThr = 0;
- if (oldCap > 0) {
- if (oldCap >= MAXIMUM_CAPACITY) {
- threshold = Integer.MAX_VALUE;
- return oldTab;
- }
- else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
- oldCap >= DEFAULT_INITIAL_CAPACITY)
- newThr = oldThr << 1; // double threshold
- }
- else if (oldThr > 0) // initial capacity was placed in threshold
- newCap = oldThr;
- else { // zero initial threshold signifies using defaults
- newCap = DEFAULT_INITIAL_CAPACITY;
- newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
- }
- if (newThr == 0) {
- float ft = (float)newCap * loadFactor;
- newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
- (int)ft : Integer.MAX_VALUE);
- }
- threshold = newThr;
- @SuppressWarnings({"rawtypes","unchecked"})
- Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
- table = newTab;
- if (oldTab != null) {
- for (int j = 0; j < oldCap; ++j) {
- Node<K,V> e;
- if ((e = oldTab[j]) != null) {
- oldTab[j] = null;
- if (e.next == null)
- newTab[e.hash & (newCap - 1)] = e;
- else if (e instanceof TreeNode)
- ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
- else { // preserve order
- Node<K,V> loHead = null, loTail = null;
- Node<K,V> hiHead = null, hiTail = null;
- Node<K,V> next;
- do {
- next = e.next;
- if ((e.hash & oldCap) == 0) {
- if (loTail == null)
- loHead = e;
- else
- loTail.next = e;
- loTail = e;
- }
- else {
- if (hiTail == null)
- hiHead = e;
- else
- hiTail.next = e;
- hiTail = e;
- }
- } while ((e = next) != null);
- if (loTail != null) {
- loTail.next = null;
- newTab[j] = loHead;
- }
- if (hiTail != null) {
- hiTail.next = null;
- newTab[j + oldCap] = hiHead;
- }
- }
- }
- }
- }
- return newTab;
- }
- //存入红黑树
- final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
- int h, K k, V v) {
- Class<?> kc = null;
- boolean searched = false;
- TreeNode<K,V> root = (parent != null) ? root() : this;
- for (TreeNode<K,V> p = root;;) {
- int dir, ph; K pk;
- if ((ph = p.hash) > h)
- dir = -1;
- else if (ph < h)
- dir = 1;
- else if ((pk = p.key) == k || (k != null && k.equals(pk)))
- return p;
- else if ((kc == null &&
- (kc = comparableClassFor(k)) == null) ||
- (dir = compareComparables(kc, k, pk)) == 0) {
- if (!searched) {
- TreeNode<K,V> q, ch;
- searched = true;
- if (((ch = p.left) != null &&
- (q = ch.find(h, k, kc)) != null) ||
- ((ch = p.right) != null &&
- (q = ch.find(h, k, kc)) != null))
- return q;
- }
- dir = tieBreakOrder(k, pk);
- }
- TreeNode<K,V> xp = p;
- if ((p = (dir <= 0) ? p.left : p.right) == null) {
- Node<K,V> xpn = xp.next;
- TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
- if (dir <= 0)
- xp.left = x;
- else
- xp.right = x;
- xp.next = x;
- x.parent = x.prev = xp;
- if (xpn != null)
- ((TreeNode<K,V>)xpn).prev = x;
- moveRootToFront(tab, balanceInsertion(root, x));
- return null;
- }
- }
- }
- //转换为红黑树
- final void treeifyBin(Node<K,V>[] tab, int hash) {
- int n, index; Node<K,V> e;
- if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
- resize();
- else if ((e = tab[index = (n - 1) & hash]) != null) {
- TreeNode<K,V> hd = null, tl = null;
- do {
- TreeNode<K,V> p = replacementTreeNode(e, null);
- if (tl == null)
- hd = p;
- else {
- p.prev = tl;
- tl.next = p;
- }
- tl = p;
- } while ((e = e.next) != null);
- if ((tab[index] = hd) != null)
- hd.treeify(tab);
- }
- }
- //扩容方法
- final Node<K,V>[] resize() {
- Node<K,V>[] oldTab = table;
- int oldCap = (oldTab == null) ? 0 : oldTab.length;
- int oldThr = threshold;
- int newCap, newThr = 0;
- if (oldCap > 0) {
- if (oldCap >= MAXIMUM_CAPACITY) {
- threshold = Integer.MAX_VALUE;
- return oldTab;
- }
- else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
- oldCap >= DEFAULT_INITIAL_CAPACITY)
- newThr = oldThr << 1; // double threshold
- }
- else if (oldThr > 0) // initial capacity was placed in threshold
- newCap = oldThr;
- else { // zero initial threshold signifies using defaults
- newCap = DEFAULT_INITIAL_CAPACITY;
- newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
- }
- if (newThr == 0) {
- float ft = (float)newCap * loadFactor;
- newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
- (int)ft : Integer.MAX_VALUE);
- }
- threshold = newThr;
- @SuppressWarnings({"rawtypes","unchecked"})
- Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
- table = newTab;
- if (oldTab != null) {
- for (int j = 0; j < oldCap; ++j) {
- Node<K,V> e;
- if ((e = oldTab[j]) != null) {
- oldTab[j] = null;
- if (e.next == null)
- newTab[e.hash & (newCap - 1)] = e;
- else if (e instanceof TreeNode)
- ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
- else { // preserve order
- Node<K,V> loHead = null, loTail = null;
- Node<K,V> hiHead = null, hiTail = null;
- Node<K,V> next;
- do {
- next = e.next;
- if ((e.hash & oldCap) == 0) {
- if (loTail == null)
- loHead = e;
- else
- loTail.next = e;
- loTail = e;
- }
- else {
- if (hiTail == null)
- hiHead = e;
- else
- hiTail.next = e;
- hiTail = e;
- }
- } while ((e = next) != null);
- if (loTail != null) {
- loTail.next = null;
- newTab[j] = loHead;
- }
- if (hiTail != null) {
- hiTail.next = null;
- newTab[j + oldCap] = hiHead;
- }
- }
- }
- }
- }
- return newTab;
- }
- //Get方法,加入很多的判断,以保证数据的准确性
- public V get(Object key) {
- Node<K,V> e;
- return (e = getNode(hash(key), key)) == null ? null : e.value;
- }
- final Node<K,V> getNode(int hash, Object key) {
- Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
- if ((tab = table) != null && (n = tab.length) > 0 &&
- (first = tab[(n - 1) & hash]) != null) {
- if (first.hash == hash && // always check first node
- ((k = first.key) == key || (key != null && key.equals(k))))
- return first;
- if ((e = first.next) != null) {
- if (first instanceof TreeNode)
- return ((TreeNode<K,V>)first).getTreeNode(hash, key);//如果是红黑树,则用红黑树的get方法
- do {
- if (e.hash == hash &&
- ((k = e.key) == key || (key != null && key.equals(k))))
- return e;
- } while ((e = e.next) != null);
- }
- }
- return null;
- }
- //1.8取消了contans方法,用containsKey和ContainsValue
- public boolean containsKey(Object key) {
- return getNode(hash(key), key) != null;
- }
- public boolean containsValue(Object value) {
- Node<K,V>[] tab; V v;
- if ((tab = table) != null && size > 0) {
- for (int i = 0; i < tab.length; ++i) {
- for (Node<K,V> e = tab[i]; e != null; e = e.next) {
- if ((v = e.value) == value ||
- (value != null && value.equals(v)))
- return true;
- }
- }
- }
- return false;
- }
- //entrySet方法
- public Set<Map.Entry<K,V>> entrySet() {
- Set<Map.Entry<K,V>> es;
- return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
- }
- final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
- public final int size() { return size; }
- public final void clear() { HashMap.this.clear(); }
- public final Iterator<Map.Entry<K,V>> iterator() {
- return new EntryIterator();
- }
- public final boolean contains(Object o) {
- if (!(o instanceof Map.Entry))
- return false;
- Map.Entry<?,?> e = (Map.Entry<?,?>) o;
- Object key = e.getKey();
- Node<K,V> candidate = getNode(hash(key), key);
- return candidate != null && candidate.equals(e);
- }
- public final boolean remove(Object o) {
- if (o instanceof Map.Entry) {
- Map.Entry<?,?> e = (Map.Entry<?,?>) o;
- Object key = e.getKey();
- Object value = e.getValue();
- return removeNode(hash(key), key, value, true, true) != null;
- }
- return false;
- }
- public final Spliterator<Map.Entry<K,V>> spliterator() {
- return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
- }
- public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
- Node<K,V>[] tab;
- if (action == null)
- throw new NullPointerException();
- if (size > 0 && (tab = table) != null) {
- int mc = modCount;
- for (int i = 0; i < tab.length; ++i) {
- for (Node<K,V> e = tab[i]; e != null; e = e.next)
- action.accept(e);
- }
- if (modCount != mc)
- throw new ConcurrentModificationException();
- }
- }
- }
- //keySet
- public Set<K> keySet() {
- Set<K> ks;
- return (ks = keySet) == null ? (keySet = new KeySet()) : ks;
- }
- final class KeySet extends AbstractSet<K> {
- public final int size() { return size; }
- public final void clear() { HashMap.this.clear(); }
- public final Iterator<K> iterator() { return new KeyIterator(); }
- public final boolean contains(Object o) { return containsKey(o); }
- public final boolean remove(Object key) {
- return removeNode(hash(key), key, null, false, true) != null;
- }
- public final Spliterator<K> spliterator() {
- return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
- }
- public final void forEach(Consumer<? super K> action) {
- Node<K,V>[] tab;
- if (action == null)
- throw new NullPointerException();
- if (size > 0 && (tab = table) != null) {
- int mc = modCount;
- for (int i = 0; i < tab.length; ++i) {
- for (Node<K,V> e = tab[i]; e != null; e = e.next)
- action.accept(e.key);
- }
- if (modCount != mc)
- throw new ConcurrentModificationException();
- }
- }
- }
- //remove方法
- public boolean remove(Object key, Object value) {
- return removeNode(hash(key), key, value, true, true) != null;
- }
- final Node<K,V> removeNode(int hash, Object key, Object value,
- boolean matchValue, boolean movable) {
- Node<K,V>[] tab; Node<K,V> p; int n, index;
- if ((tab = table) != null && (n = tab.length) > 0 &&
- (p = tab[index = (n - 1) & hash]) != null) {
- Node<K,V> node = null, e; K k; V v;
- if (p.hash == hash &&
- ((k = p.key) == key || (key != null && key.equals(k))))
- node = p;
- else if ((e = p.next) != null) {
- if (p instanceof TreeNode)
- node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
- else {
- do {
- if (e.hash == hash &&
- ((k = e.key) == key ||
- (key != null && key.equals(k)))) {
- node = e;
- break;
- }
- p = e;
- } while ((e = e.next) != null);
- }
- }
- if (node != null && (!matchValue || (v = node.value) == value ||
- (value != null && value.equals(v)))) {
- if (node instanceof TreeNode)
- ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
- else if (node == p)
- tab[index] = node.next;
- else
- p.next = node.next;
- ++modCount;
- --size;
- afterNodeRemoval(node);
- return node;
- }
- }
- return null;
- }
- //size方法和isEmpty方法
- transient int size;//和put以及remove方法有关系,增加就++,删除就--
- public int size() {
- return size;
- }
- public boolean isEmpty() {
- return size == 0;
- }
对比一下可以发现,在JDK1.8的时候,hashmap有了很大的改变,不止加了很多小的优化,而且还添加红黑树用来解决哈希碰撞导致的的查询问题。
补充:
为什么要转换为红黑树?
红黑树具有很高效的查找功能,当数值不多时用链表的形式就可以应对问题,但是当链表很长的时候(发生了哈希碰撞多),hashmap在进行put和get等方法时都需要遍历链表,红黑树可以保证hashmap在发生哈希碰撞时能保证数据元素的高效定位。
为什么转为红黑树的阈(yu)值为8?
因为由链表转换成红黑树时,需要额外的空间和时间,作者根据“泊松分布”算出,出现链表长度为8的情况已经非常小了,大概是:0.00000006,所以在8的时候再转换为红黑树。
数据结构(集合)学习之Map(一)的更多相关文章
- 数据结构(集合)学习之Map(二)
集合 框架关系图 补充:HashTable父类是Dictionary,不是AbstractMap. 一:HashMap中的链循环: 一般来说HashMap中的链循环会发生在多线程操作时(虽然HashM ...
- 数据结构(集合)学习之Set
集合 框架关系图: Collection接口下面有三个子接口:List.Set.Queue.此篇是关于Set<E>的简单学习总结. 补充:HashTable父类是Dictionary,不是 ...
- 数据结构(集合)学习之Queue
集合 框架关系图: Collection接口下面有三个子接口:List.Set.Queue.此篇是关于Queue<E>的简单学习总结. 补充:HashTable父类是Dictionary, ...
- 数据结构(集合)学习之List
集合 框架关系图: Collection接口下面有三个子接口:List.Set.Queue.此篇是关于List<E>的简单学习总结. 补充:HashTable父类是Dictionary,不 ...
- 数据结构(集合)学习之Collection和Iterator
集合 1.集合与数组 数组(可以存储基本数据类型)是用来存现对象的一种容器,但是数组的长度固定,不适合在对象数量未知的情况下使用. 集合(只能存储对象,对象类型可以不一样)的长度可变,可在多数情况下使 ...
- 【转】Java学习---Java核心数据结构(List,Map,Set)使用技巧与优化
[原文]https://www.toutiao.com/i6594587397101453827/ Java核心数据结构(List,Map,Set)使用技巧与优化 JDK提供了一组主要的数据结构实现, ...
- Java学习:集合双列Map
数据结构 数据结构: 数据结构_栈:先进后出 入口和出口在同一侧 数据结构_队列:先进先出 入口和出口在集合的两侧 数据结构_数组: 查询快:数组的地址是连续的,我们通过数组的首地址可以找到数组,通过 ...
- java集合学习(2):Map和HashMap
Map接口 java.util 中的集合类包含 Java 中某些最常用的类.最常用的集合类是 List 和 Map. Map 是一种键-值对(key-value)集合,Map 集合中的每一个元素都包含 ...
- 2019/3/4 java集合学习(二)
java集合学习(二) 在学完ArrayList 和 LinkedList之后,基本已经掌握了最基本的java常用数据结构,但是为了提高程序的效率,还有很多种特点各异的数据结构等着我们去运用,类如可以 ...
随机推荐
- Dubbo(二):深入理解Dubbo的服务发现SPI机制
一.前言 用到微服务就不得不来谈谈服务发现的话题.通俗的来说,就是在提供服务方把服务注册到注册中心,并且告诉服务消费方现在已经存在了这个服务.那么里面的细节到底是怎么通过代码实现的呢,现在我们来看看D ...
- 数学建模之优劣解距法(TOPSIS)
优劣解距法简称TOPSIS,是一种综合评价方法,利用原始数据反映各评价方案之间的差距 优劣解距法的步骤通常为: 先将原始数据针具做正向化处理,得到正向化矩阵 再对正向化矩阵标准化处理以消除各指标纲量的 ...
- 剑指offer刷题笔记
删除链表中重复的结点:较难 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 例如,链表1->2->3->3->4->4- ...
- 必须收藏的MySQL高性能优化实战总结!
MySQL对于很多程序员来说,是一个非常棘手的问题,多数情况都是因为对数据库出现问题的情况和处理思路不清晰.在进行MySQL的优化之前必须要了解的就是MySQL的查询过程,很多的查询优化工作实际上就是 ...
- 2 深入分析 Java IO的工作机制(二)
2.5 I/O调优 下面总结一些磁盘I/O和网络I/O的常用优化技巧. 2.5.1 磁盘I/O优化 1. 性能检测 应用程序通常都需要访问磁盘来读取数据,而磁盘I/O通常都很耗时,要判断I/O是否是一 ...
- cmake处理多源文件目录的方法(转)
cmake处理源代码分布在不同目录中的情况也很简单,现在假设我们的源代码分布情况如下: 源代码的分布情况 其中src目录下的文件要编译成一个链接库 第一步,项目主目录中的CMakelist.txt 在 ...
- lwip stats
lwip统计量分两种,一种是lwip自己的,一种是snmp的. 直接用snmp的 /* ----------------------------------- ---------- Statistic ...
- Unable to update index for nexus-publish | http://ip:port/repository/maven-public/
问题描述:Unable to update index for nexus-publish | http://ip:port/repository/maven-public/ 解决方案:进入工作空间. ...
- scanf函数中*修饰符的作用,如:%*d
在scanf函数中,*修饰符可以跳过所在项的输入.如下: #include <stdio.h> int main() { ; printf("请输入:"); scanf ...
- Python—TCP的黏包问题以及UDP的分片问题
TCP协议与UDP协议 TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务.收发两端(客户端和服务器端)都要有一一成对的socket, ...