集合

框架关系图:

补充:HashTable父类是Dictionary,不是AbstractMap。

Map:

Map(接口)和Collection都属于集合,但是Map不是Collection的子类或者子接口。而且Map比较特殊:它是以<key,value>键值对的方式来存储数据,其中key不能重复,且一个key最多只对应一个value。

Map在面试中常问的三个子类:HashMap、HashTable、TreeMap。

HashMap:

基于哈希表的实现的Map接口, 该实现提供了所有可选的映射操作,并允许null的key和null的value。

在JDK1.8以前,HashMap底层是:"链表+数组"结构;在JDK1.8时,对HashMap底层进行优化,成了:数组+链表+红黑树。

JDK1.6:初始容量为16,加载因子为0.75,底层是Entry数组加链表结构:

 //初始容量
static final int DEFAULT_INITIAL_CAPACITY = 16;
//加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//存储容器-数组
transient Entry[] table;
//静态内部类
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;//把key和value转换成数组中的Entry对象
final int hash; /**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
} public final K getKey() {
return key;
} public final V getValue() {
return value;
} public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
} public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
} public final int hashCode() {
return (key==null ? 0 : key.hashCode()) ^
(value==null ? 0 : value.hashCode());
} public final String toString() {
return getKey() + "=" + getValue();
} void recordAccess(HashMap<K,V> m) {
} void recordRemoval(HashMap<K,V> m) {
}
}
//Put方法
public V put(K key, V value) {
if (key == null)
return putForNullKey(value);//hashmap可以存key==null
int hash = hash(key.hashCode());//根据key的hashcode计算一个哈希数
int i = indexFor(hash, table.length);//根据计算的哈希数获取数组的坐标
for (Entry<K,V> e = table[i]; e != null; e = e.next) {//hashmap不允许重复,如果key重复了,把新的value替换老的value
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {//
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
} modCount++;
addEntry(hash, key, value, i);//处理好以后把hash,key,value,index添加到数组中去
return null;
}
//针对key=null的方法
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}
//获取哈希数
static int hash(int h) {
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
//获取数组坐标
static int indexFor(int h, int length) {
return h & (length-1);
}
//添加元素的方法
void addEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];//如果index相同了(哈希碰撞),把原来的值给一个新的Entry对象
//然后把新来的值存在数组中,老值作为新值的下标(next对象),在此也体现了hashmap的“链式结构”
table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
if (size++ >= threshold)
resize(2 * table.length);//如果数值超容了,进行扩容:数组的长度*2(默认初始容量16,所以为16*2=32)
}
//扩容方法
void resize(int newCapacity) {//2倍长度作为参数传入
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
} Entry[] newTable = new Entry[newCapacity];//新建数组
transfer(newTable);//数组值转换的方法
table = newTable;
threshold = (int)(newCapacity * loadFactor);
}
//数组值转换的方法
void transfer(Entry[] newTable) {
Entry[] src = table;
int newCapacity = newTable.length;
for (int j = 0; j < src.length; j++) {
Entry<K,V> e = src[j];
if (e != null) {
src[j] = null;
do {//此处为复制的过程
Entry<K,V> next = e.next;
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
} while (e != null);
}
}
}
//Get方法
public V get(Object key) {
if (key == null)
return getForNullKey();//遍历,获取到key==null的值
int hash = hash(key.hashCode());//然后根据key获取哈希值
for (Entry<K,V> e = table[indexFor(hash, table.length)];//然后获取坐标得到Entry对象
e != null;
e = e.next) {//从第一个开始遍历,如果不是,把Entry对象的下标给Entry然后比较
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
return e.value;//当哈希值和key都相等的时候,把value返回去
}
return null;
}
//key等于null获取值
private V getForNullKey() {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
//Clear方法
public void clear() {
modCount++;
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)//遍历数组,把值清空,把size置为0
tab[i] = null;
size = 0;
}
//entrySet​方法:获取到数组中Entry对象的Set集合
private transient Set<Map.Entry<K,V>> entrySet = null; public Set<Map.Entry<K,V>> entrySet() {
return entrySet0();
}
private Set<Map.Entry<K,V>> entrySet0() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
//原理就是迭代map中的Entry对象
private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return newEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> e = (Map.Entry<K,V>) o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o) != null;
}
public int size() {
return size;
}
public void clear() {
HashMap.this.clear();
}
}
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException(); if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null) ;
}
current = e;
return e;
}
//keySet​方法
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
//原理也是通过迭代器,迭代Entry对象,然后获取key
private final class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
} private final class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
//remove方法
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}
final Entry<K,V> removeEntryForKey(Object key) {
int hash = (key == null) ? 0 : hash(key.hashCode());
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev; while (e != null) {//用while循环,当哈希值和key都相等的时候把值得next赋值给现在位置的值
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
} return e;
}
//size方法和isEmpty方法
transient int size;//和put以及remove方法有关系,增加就++,删除就--
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
//contains方法
public boolean contains(Object o) {
return containsKey(o);
}
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
} int hash = (key == null) ? 0 : hash(key);
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}

补充1:

哈希表(Hash table,采用散列技术将记录存储在一块连续的存储空间中,这块连续存储空间称为散列表或哈希表(Hash table)),是根据关键码值(Key value)而直接进行访问的数据结构,也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。
记录的存储位置=f(关键字),被称为散列函数,又称为哈希(Hash函数),

补充二:

两个对象相等,hashCode一定相同,但是两个对象的HashCode相同,这两个对象不一定相等。

JDK1.7源码(和1.6的对比):

 //对比一:1.7默认初始容量用了位移计算
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//存储容器-数组
static final Entry<?,?>[] EMPTY_TABLE = {}; transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;
//静态内部类
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
int hash; /**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
} public final K getKey() {
return key;
} public final V getValue() {
return value;
} public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
} public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
} public final int hashCode() {
return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
} public final String toString() {
return getKey() + "=" + getValue();
} /**
* This method is invoked whenever the value in an entry is
* overwritten by an invocation of put(k,v) for a key k that's already
* in the HashMap.
*/
void recordAccess(HashMap<K,V> m) {
} /**
* This method is invoked whenever the entry is
* removed from the table.
*/
void recordRemoval(HashMap<K,V> m) {
}
}
//Put方法
public V put(K key, V value) {
if (table == EMPTY_TABLE) {//此出多了一个数组初始化的方法
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
} modCount++;
addEntry(hash, key, value, i);
return null;
}
//初始化数组
private void inflateTable(int toSize) { int capacity = roundUpToPowerOf2(toSize); // 此处把传入的数组容量向上转换为2的n次幂的数值 threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);
}
final boolean initHashSeedAsNeeded(int capacity) {
boolean currentAltHashing = hashSeed != 0;
boolean useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
boolean switching = currentAltHashing ^ useAltHashing;
if (switching) {
hashSeed = useAltHashing
? sun.misc.Hashing.randomHashSeed(this)
: 0;
}
return switching;
}
//针对key=null的方法
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}
//获取哈希数
final int hash(Object k) {
int h = hashSeed;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
} h ^= k.hashCode(); h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
//获取数组坐标
static int indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
}
//添加元素的方法
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {//1.7这里先进行是否需要扩容的判断
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
} createEntry(hash, key, value, bucketIndex);
}
//扩容方法
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
} Entry[] newTable = new Entry[newCapacity];
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
//数组值转换的方法
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
//添加元素的方法
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
//Get方法
public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key); return null == entry ? null : entry.getValue();
}
//key等于null获取值
private V getForNullKey() {
if (size == 0) {//1.7在此处又多了个判断数组是否为空的情况
return null;
}
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}
//Clear方法
public void clear() {
modCount++;
Arrays.fill(table, null);//1,7此处调用了Arrays中的方法,不过原理还是一样的
size = 0;
} public static void fill(Object[] a, Object val) {
for (int i = 0, len = a.length; i < len; i++)
a[i] = val;
}
//entrySet​方法:获取到数组中Entry对象的Set集合
private transient Set<Map.Entry<K,V>> entrySet = null; public Set<Map.Entry<K,V>> entrySet() {
return entrySet0();
} private Set<Map.Entry<K,V>> entrySet0() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}
//原理就是迭代map中的Entry对象
private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return newEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> e = (Map.Entry<K,V>) o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o) != null;
}
public int size() {
return size;
}
public void clear() {
HashMap.this.clear();
}
}
//keySet​方法
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
//原理也是通过迭代器,迭代Entry对象,然后获取key
private final class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
}
//remove方法
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
} final Entry<K,V> removeEntryForKey(Object key) {
if (size == 0) {
return null;
}
int hash = (key == null) ? 0 : hash(key);
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev; while (e != null) {
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
} return e;
}
//size方法、isEmpty方法、contains方法
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
} public boolean contains(Object o) {
return containsKey(o);
}
public boolean containsKey(Object key) {
return getEntry(key) != null;
}
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
} int hash = (key == null) ? 0 : hash(key);
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}

对比可以看出,1.6和1.7重要方法的原理基本没变,1.7在部分方法上做了一点小的优化,还有就是从1.7开始,创建无参hashmap时不直接生成数组了,采用懒加载的方式,在用的时候再初始化。

1.6无参构造函数:

     public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();
}

1.7无参构造函数(在Put方法中,判断table等于空的时候再创建):

     public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
}

HashMap1.8:初始容量为16,加载因子为0.75,底层是Entry数组+链表+红黑树:

 //初始容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
//加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//转为红黑树的阈(yu)值
static final int TREEIFY_THRESHOLD = 8;
//从红黑树转换为链表的阈值(扩容会重新计算一次数据长度)
static final int UNTREEIFY_THRESHOLD = 6;
//默认红黑树的容量
static final int MIN_TREEIFY_CAPACITY = 64;
//存储容器-数组,由1.7的Entry<K,V>[]数组变为了Node<K,V>[] transient Node<K,V>[] table; static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next; Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; } public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
} public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
} public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
//Put方法
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;//首先还是先判断数组是否为空的,是的话进行初始化
if ((p = tab[i = (n - 1) & hash]) == null)//如果数组该位置为空,则把key,value传入该位置
tab[i] = newNode(hash, key, value, null);
else {//走到这说明发生了哈希碰撞,计算的key的哈希值相同
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))//先比较数据是否重复,重复的话就新值替换旧值
e = p;
else if (p instanceof TreeNode)//判断该对象是不是红黑树的元素,是的话直接存入红黑树
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {//遍历链表上的元素
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // 如果数量达到临界点,则转换为红黑树
treeifyBin(tab, hash);//转换方法
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;//e其实是p.next,此处体现1.8的尾插法
}
}
if (e != null) { // 此处作用为,当key相同时,新value替换老的value,并将oleValue返回出去
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)//如果数组大于初始量*加载因子,则进行扩容
resize();
afterNodeInsertion(evict);
return null;
}
//空数组初始化方法
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
//存入红黑树
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
} TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
//转换为红黑树
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
//扩容方法
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
//Get方法,加入很多的判断,以保证数据的准确性
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
} final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);//如果是红黑树,则用红黑树的get方法
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
//1.8取消了contans方法,用containsKey和ContainsValue
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
} public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}
//entrySet方法
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es;
return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
} final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator();
}
public final boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Node<K,V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o) {
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
//keySet
public Set<K> keySet() {
Set<K> ks;
return (ks = keySet) == null ? (keySet = new KeySet()) : ks;
} final class KeySet extends AbstractSet<K> {
public final int size() { return size; }
public final void clear() { HashMap.this.clear(); }
public final Iterator<K> iterator() { return new KeyIterator(); }
public final boolean contains(Object o) { return containsKey(o); }
public final boolean remove(Object key) {
return removeNode(hash(key), key, null, false, true) != null;
}
public final Spliterator<K> spliterator() {
return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
}
public final void forEach(Consumer<? super K> action) {
Node<K,V>[] tab;
if (action == null)
throw new NullPointerException();
if (size > 0 && (tab = table) != null) {
int mc = modCount;
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next)
action.accept(e.key);
}
if (modCount != mc)
throw new ConcurrentModificationException();
}
}
}
//remove方法
public boolean remove(Object key, Object value) {
return removeNode(hash(key), key, value, true, true) != null;
} final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
//size方法和isEmpty方法
transient int size;//和put以及remove方法有关系,增加就++,删除就-- public int size() {
return size;
} public boolean isEmpty() {
return size == 0;
}

对比一下可以发现,在JDK1.8的时候,hashmap有了很大的改变,不止加了很多小的优化,而且还添加红黑树用来解决哈希碰撞导致的的查询问题。

补充:

为什么要转换为红黑树?
红黑树具有很高效的查找功能,当数值不多时用链表的形式就可以应对问题,但是当链表很长的时候(发生了哈希碰撞多),hashmap在进行put和get等方法时都需要遍历链表,红黑树可以保证hashmap在发生哈希碰撞时能保证数据元素的高效定位。

为什么转为红黑树的阈(yu)值为8?
因为由链表转换成红黑树时,需要额外的空间和时间,作者根据“泊松分布”算出,出现链表长度为8的情况已经非常小了,大概是:0.00000006,所以在8的时候再转换为红黑树。

数据结构(集合)学习之Map(一)的更多相关文章

  1. 数据结构(集合)学习之Map(二)

    集合 框架关系图 补充:HashTable父类是Dictionary,不是AbstractMap. 一:HashMap中的链循环: 一般来说HashMap中的链循环会发生在多线程操作时(虽然HashM ...

  2. 数据结构(集合)学习之Set

    集合 框架关系图: Collection接口下面有三个子接口:List.Set.Queue.此篇是关于Set<E>的简单学习总结. 补充:HashTable父类是Dictionary,不是 ...

  3. 数据结构(集合)学习之Queue

    集合 框架关系图: Collection接口下面有三个子接口:List.Set.Queue.此篇是关于Queue<E>的简单学习总结. 补充:HashTable父类是Dictionary, ...

  4. 数据结构(集合)学习之List

    集合 框架关系图: Collection接口下面有三个子接口:List.Set.Queue.此篇是关于List<E>的简单学习总结. 补充:HashTable父类是Dictionary,不 ...

  5. 数据结构(集合)学习之Collection和Iterator

    集合 1.集合与数组 数组(可以存储基本数据类型)是用来存现对象的一种容器,但是数组的长度固定,不适合在对象数量未知的情况下使用. 集合(只能存储对象,对象类型可以不一样)的长度可变,可在多数情况下使 ...

  6. 【转】Java学习---Java核心数据结构(List,Map,Set)使用技巧与优化

    [原文]https://www.toutiao.com/i6594587397101453827/ Java核心数据结构(List,Map,Set)使用技巧与优化 JDK提供了一组主要的数据结构实现, ...

  7. Java学习:集合双列Map

    数据结构 数据结构: 数据结构_栈:先进后出 入口和出口在同一侧 数据结构_队列:先进先出 入口和出口在集合的两侧 数据结构_数组: 查询快:数组的地址是连续的,我们通过数组的首地址可以找到数组,通过 ...

  8. java集合学习(2):Map和HashMap

    Map接口 java.util 中的集合类包含 Java 中某些最常用的类.最常用的集合类是 List 和 Map. Map 是一种键-值对(key-value)集合,Map 集合中的每一个元素都包含 ...

  9. 2019/3/4 java集合学习(二)

    java集合学习(二) 在学完ArrayList 和 LinkedList之后,基本已经掌握了最基本的java常用数据结构,但是为了提高程序的效率,还有很多种特点各异的数据结构等着我们去运用,类如可以 ...

随机推荐

  1. 从零开始学习redis源码

    2020的开年是比较艰难的,爆发了肺炎疫情,希望大家多注意安全,也希望疫情早日好转! 以3.2版本的源码为例,开始讲解,有时会贴出源码,进行说明,并会注明源码出处. 数据库 应该都知道默认redis会 ...

  2. Codeforces 924 A Tritonic Iridescence(暴力集合交集、相等)

    题目链接:点击打开链接 There is a rectangular grid of n rows of m initially-white cells each. Arkady performed ...

  3. oracle面试基础

    . 对于一个存在系统性能的系统,说出你的诊断处理思路 ). 做statspack收集系统相关信息 了解系统大致情况/确定是否存在参数设置不合适的地方/查看top event/查看top sql等 ). ...

  4. 分布式SnowFlakeID(雪花ID)原理和改进优化

    最近在研究分布式框架的组件和整体设计思路.所有的问题,一旦涉及分布式难度就呈几何倍数的提升.包括最常见的ID生成也是,单机情况下,使用数据库自增ID.UUID都是简单易行的选择 但在分布式环境下,就需 ...

  5. Go语言实现:【剑指offer】栈的压入、弹出序列

    该题目来源于牛客网<剑指offer>专题. 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5 ...

  6. Go语言实现:【剑指offer】和为S的两个数字

    该题目来源于牛客网<剑指offer>专题. 输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的. 对应每个测试案 ...

  7. 12-Java-myeclipse集成Tomcat步骤及Tomcat的使用步骤

    一.了解Tomcat Tomcat是由Apache推出的一款免费开源的servlet容器/web应用服务器,可实现javaweb程序的装载,是配置JSP和java系统必备的一款环境   Tomcat目 ...

  8. vue子向父传值

    要弄懂子组件如何向父组件传值,需要理清步骤 子组件向父组件传值的步骤 一:子组件在组件标签上通过绑定事件的方式向父组件发射数据 <!--html--><template id=&qu ...

  9. 13-Servlet&Request

    今日内容: 1. Servlet 2. Request Servlet 1. 概念 2. 步骤 3. 执行原理 4. 生命周期 5. Servlet3.0注解配置 6. Servlet的体系结构 se ...

  10. php mySql常用的函数

    1.mysql_connect()-建立数据库连接 格式: resource mysql_connect([string hostname [:port] [:/path/to/socket] [, ...