<数论相关>欧几里得与拓展欧几里得证明及应用
欧几里得算法
欧几里得算法的复杂度为O(log(n)),是一个非常高效的求最大公约数算法。
在这里不证明欧几里得算法的复杂度,有兴趣的可以访问以下链接:http://blog.sina.com.cn/s/blog_62e4e31a0101feo7.html
定义如下:
欧几里德算法是用来求两个正整数最大公约数的算法。是由古希腊数学家欧几里德在其著作《The Elements》中最早描述了这种算法,所以被命名为欧几里德算法。
计算公式为:gcd(a,b) = gcd(b,a mod b)
证明:
边界情况:gcd(n,0)=n 因为当除数为0时 任何数都可以整除0;此时最大公约数为被除数n;
一般情况:设a除以b商为p余数为q 则有 a = b*p + q;
a可以看作是两部分相加 根据模数的性质 (x+y)%p = (x%p + y%p) %p 即 a可以整除b*p与q的最大公因数,当然也可以整除b与q的最大公因数
有b与q的最大公因数gcd(b,q),可知a一定可以整除gcd(b,q),所以a,b,q都可以整除gcd(b,q),因此gcd(b,q)可以整除gcd(a,b);
变化一下形式 q=a-b*p,同理可得gcd(a,b)整除gcd(b,q);
综上可以得到gcd(a,b)=gcd(b,a%b)
证毕。
拓展欧几里得算法
扩展欧几里德算法可以用来求解形如 ax+by=c的方程的一组整数解(其中a,b,c均为整数)
存在整数解的充分条件是gcd(a,b)|c,即c为a b最大公约数的一个倍数;
求解:
先将等式左右两边同时除以gcd(a,b),不影响后续计算
即ax+by=1且a与b互质。
由于:
所以x变成了y,y变成了x-[a/b]*y,利用这个关系可以带入递推公式求解。
特殊性:当b=0的时候,a=1,此时x=1,y=0
代码实现:
void Exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) x = , y = ;
else Exgcd(b, a % b, y, x), y -= a / b * x;
}
参考:https://www.cnblogs.com/zjp-shadow/p/9267675.html#autoid-3-3-0
<数论相关>欧几里得与拓展欧几里得证明及应用的更多相关文章
- ACM数论-欧几里得与拓展欧几里得
ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...
- gcd模板(欧几里得与扩展欧几里得、拓展欧几里得求逆元)
gcd(欧几里得算法辗转相除法): gcd ( a , b )= d : 即 d = gcd ( a , b ) = gcd ( b , a mod b ):以此式进行递归即可. 之前一直愚蠢地以为辗 ...
- NOIP2012拓展欧几里得
拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...
- BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)
污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...
- [zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)
Power of Fibonacci Time Limit: 5 Seconds Memory Limit: 65536 KB In mathematics, Fibonacci numbe ...
- 51 Nod 1256 乘法逆元(数论:拓展欧几里得)
1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K ...
- SGU 141.Jumping Joe 数论,拓展欧几里得,二元不等式 难度:3
141. Jumping Joe time limit per test: 0.25 sec. memory limit per test: 4096 KB Joe is a frog who lik ...
- poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】
POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...
- poj 1061 青蛙的约会+拓展欧几里得+题解
青蛙的约会+拓展欧几里得+题解 纵有疾风起 题意 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出 ...
随机推荐
- Linux中的库
一.基本概念 1.1.什么是库 在 windows 平台和 linux 平台下都大量存在着库. 本质上来说库是一种可执行的二进制代码(但不可以独立执行),可以被操作系统载入内存执行. 由 ...
- JavaScript--for in循环访问属性用"."和[ ]的区别
// for in 循环遍历对象的时候// 内部要访问属性的时候不能点语法访问,因为for in 的key是字符串格式// 可通过方括号实现访问 for(var key in manObj) { co ...
- 【JZOJ4890】【NOIP2016提高A组集训第14场11.12】随机游走
题目描述 YJC最近在学习图的有关知识.今天,他遇到了这么一个概念:随机游走.随机游走指每次从相邻的点中随机选一个走过去,重复这样的过程若干次.YJC很聪明,他很快就学会了怎么跑随机游走.为了检验自己 ...
- N!分解素因子及若干问题【转载】
这里写的非常好http://www.cnblogs.com/openorz/archive/2011/11/14/2248992.html,感谢博主,我这里就直接用了. 将N!表示成 N! = p1^ ...
- SqlSugar 笔记
分组: 日期分组一: var result = await temp .GroupBy("date_format(Day,'%Y-%m')") .Select(s => ne ...
- IDEA-创建WEB项目并部署Tomcat
一.创建简单web项目 1.创建一个web project File -> new Project ->选择project sdk 为1.6(如果没有sdk的同学请先配置)-> Ne ...
- HLSL效果框架
原文:HLSL效果框架 HLSL效果框架能简化许多操作.这里先不写具体的效果框架的程序,在处理多光源光照的时候再整理. 下一章:效果框架-多种光源的多光源 叠加效果 这儿先列出效果框架的一个注意点: ...
- 卸载ROS命令
ROS有问题需要卸载只需输入以下命令: sudo apt-get purge ros-* sudo rm -rf /etc/ros
- 8.5打包libgdx为一个桌面程序(jar包)
简陋的地图编辑终于做好了,于是要开始制作地图了,想导出为一个windows下可用的程序,让熟人代做地图,然后找人问了下打包流程,其实跟普通java打包为jar没什么区别,记录如下: 导出类型选第三个 ...
- MapReduce数据流-Partiton&Shuffle