codeforces 1194F (组合数学)
Codeforces 11194F (组合数学)
传送门:https://codeforces.com/contest/1194/problem/F
题意:
你有n个事件,你需要按照1~n的顺序完成这些事件,每个事件需要\(t_i\)的时间完成,你现在一共有T的时间去做这些事情,每做一件事情的时候,你有0.5的概率花费\(t_i\)的时间完成他,也有0.5的概率花费\(t_i+1\)的时间去完成他,如果在做这个事件的时候时间花完了,你就相当于没有做成这个事件,现在问你在T的时间内完成的事件的个数的期望是多少
题解:
读完题后想到的应该是一个概率dp,但是T有\(2e14\)的大小,我们现在着手于如何优化他
首先,我的每一个事件都只有两种情况,如果是情况1 ,就按照原本的时间去完成他,如果是情况2,我就要在原本的时间的基础上加上一个1,那么我完成k个事件时,我始终是要花费sum[k]的时间去做这些事件的,这里的sum是t的前缀和
所以我们其实不用管时间这个限制条件了,我们只需要得到,前i个事件中我有多少个事件需要花费+1的这个时间去完成他的事件的个数,那么这样我们就变成了一个组合数的问题了
我们可以得到在我们完成k个事件时,有i个事件出现了+1的情况
那么这个概率就是\((\frac{1}{2})^k*C_k^{i}\)这个就很容易理解,如果求期望那么乘上一个k就可以了
那么我总的期望就是\(\sum_{i=1}^{posmax}(\frac{1}{2})^(posmax)*C_k^{i}*posmax\)
posmax表示,我当前最多可以完成的事件
我们用一个副本posmaxtmp来表示posmax完成这些事件的时间
那么在循环中posmaxtmp每次+1时就可以使得完成一个事件的时间+1
如果posmaxtmp大于T了,我们后面的事件就完不成,posmax就得往前走,这里需要处理一下下
并且,当posmaxtmp大于T时,我也需要算出这一部分的期望即完成posmax-1个事件时对答案的贡献
代码:
#include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 3e5 + 5;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
typedef long long ll;
ll F[maxn], invF[maxn];
ll power(ll a, ll b) {
ll ret = 1;
while(b) {
if(b & 1) ret = (ret * a) % mod;
a = (a * a) % mod;
b >>= 1;
}
return ret;
}
void init() {
F[0] = 1;
for(int i = 1; i < maxn; i++) {
F[i] = (F[i - 1] * i) % mod;
}
invF[maxn - 1] = power(F[maxn - 1], mod - 2);
for(int i = maxn - 2; i >= 0; i--) {
invF[i] = invF[i + 1] * (i + 1) % mod;
}
}
ll C(int n, int m) {
if(n < 0 || m < 0 || m > n) return 0;
if(m == 0 || m == n) return 1;
return F[n] * invF[n - m] % mod * invF[m] % mod;
}
LL t[maxn];
LL sum[maxn];
int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
IO;
init();
int n;
LL T;
cin >> n >> T;
for(int i = 1; i <= n; i++) {
cin >> t[i];
sum[i] = sum[i - 1] + t[i];
}
// debug1(T);
int posmax = n;
for(int i = 1; i <= n; i++) {
// debug1(sum[i]);
if(sum[i] > T) {
posmax = i - 1;
break;
}
}
// debug1(posmax);
int num;
int inv2 = invF[2];
LL res = 0;
LL posmaxtmp = sum[posmax] - 1;
// debug1(inv2);
for(int i = 0; i <= posmax; i++) {
++posmaxtmp;
// debug3(i, posmaxtmp, C(posmax, i));
// debug1(posmax);
while(posmaxtmp > T) {
res += power(inv2, posmax) * C(posmax - 1, i - 1) % mod * (posmax - 1) % mod;
res %= mod;
posmaxtmp -= t[posmax];
--posmax;
}
if(i > posmax) break;
res += power(inv2, posmax) % mod * C(posmax, i) % mod * posmax % mod;
res %= mod;
}
cout << res << endl;
return 0;
}
codeforces 1194F (组合数学)的更多相关文章
- Codeforces - 1194F - Crossword Expert - 组合数学
https://codeforc.es/contest/1194/problem/F 下面是错的. 看起来有点概率dp的感觉? 给你T秒钟时间,你要按顺序处理总共n个事件,每个事件处理花费的时间是ti ...
- CodeForces 407C 组合数学(详解)
题面: http://codeforces.com/problemset/problem/407/C 一句话题意:给一个长度为n的序列g,m次操作,每次操作(l,r,k)表示将g[l]~g[r]的每个 ...
- Codeforces Round #439 (Div. 2) Problem C (Codeforces 869C) - 组合数学
— This is not playing but duty as allies of justice, Nii-chan! — Not allies but justice itself, Onii ...
- Codeforces 722E 组合数学 DP
题意:有一个n * m的棋盘,你初始在点(1, 1),你需要去点(n, m).你初始有s分,在这个棋盘上有k个点,经过一次这个点分数就会变为s / 2(向上取整),问从起点到终点的分数的数学期望是多少 ...
- Crossword Expert CodeForces - 1194F (期望)
大意: $n$个题, 按照第$i$题随机$t_i$或$t_i+1$秒钟完成, 最多做$T$秒, 求做题数期望. 期望转为做题数$\ge x$的方案数之和最后再除以总方案数 这是因为$\sum\limi ...
- Codeforces 1194F. Crossword Expert
传送门 考虑每一个位置的期望贡献 $P[i]$ 对于第 $k$ 个位置,设 $sum=\sum_{i=1}^{k}t[k]$,那么 $T-sum$ 即为用最短时间完成完位置 $k$ 后多出来的空闲时间 ...
- Codeforces 1172B(组合数学)
题面 给出一棵n个点的树,要求把它画在圆上,且边不相交,画法与排列一一对应(即旋转后相同的算不同种),求方案数.如下图是4个点的树\(T:V=\{1,2,3,4\},E=\{(1,2),(1,3),( ...
- codeforces 932E Team Work(组合数学、dp)
codeforces 932E Team Work 题意 给定 \(n(1e9)\).\(k(5000)\).求 \(\Sigma_{x=1}^{n}C_n^xx^k\). 题解 解法一 官方题解 的 ...
- Codeforces - 1081C - Colorful Bricks - 简单dp - 组合数学
https://codeforces.com/problemset/problem/1081/C 这道题是不会的,我只会考虑 $k=0$ 和 $k=1$ 的情况. $k=0$ 就是全部同色, $k=1 ...
随机推荐
- Servlet会话跟踪和Cookies及HttpSession会话
会话只是指一段指定的时间间隔. 会话跟踪是维护用户状态(数据)的一种方式.它也被称为servlet中的会话管理. Http协议是一个无状态的,所以我们需要使用会话跟踪技术来维护用户状态. 每次用户请求 ...
- sql —— between
BETWEEN 操作符在 WHERE 子句中使用,作用是选取介于两个值之间的数据范围. 原表: 执行查询: 上面就可以搜索出得分为80~90的学生了,包含80,也包含90.
- jenkins使用教程!
http://jenkins-ci.org/ 首先去官方下载war包,直接安装jenkins的方式比较麻烦. 下载tomcat,jdk和ant cd /optwget http://mirrors.h ...
- 非阻塞模式下,虽然connect出错,但是getsockopt取得的错误却是0的问题
调试项目代码时,发现了一个奇怪问题,记录如下: 非阻塞模式下,connect发起建链,返回-1(这在非阻塞模式下是很正常的现象).然后将该socket的写事件进行监听,在写事件触发后,getsocko ...
- 巨蟒python全栈开发-第11阶段 ansible3_1入门四个模块command&shell&script©
大纲 1.系统安装与机器克隆 2.ansible介绍和host-pattern格式 3.command模块 4.shell模块 5.script模块 6.copy模块
- Laravel / PHP 扩展包视频教程
https://laravel-china.org/courses/laravel-package 每周精选两个以上扩展包进行讲解,涵盖 PHP 和 Laravel 相关的最新.最热.最常用的扩展包. ...
- @hdu - 6594@ Double Tree
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定两棵 N 个点的树,以及树上每条边的权值 w(u, v),每 ...
- console.log详细介绍
console.log详细介绍 效果图: 代码如下: console.log("%c hello world!:http://www.baidu.com","color: ...
- Java容易搞错的知识点
一.关于Switch 代码: Java代码 1 public class TestSwitch { 2 public static void main(Stri ...
- Android Studio(二):快捷键设置、插件安装
Android Studio相关博客: Android Studio(一):介绍.安装.配置 Android Studio(二):快捷键设置.插件安装 Android Studio(三):设置Andr ...