As two icons of the Great Depression, Bonnie and Clyde represent the ultimate criminal couple. Stories were written, headlines captured, and films were made about the two bank robbers known as Romeo and Juliet in a getaway car.

The new generation of Bonnie and Clyde is no longer cold-blooded killers with guns. Due to the boom of internet, they turn to online banks and scheme to hack the safety system. The safety system consists of a number of computers connected by bidirectional cables. Since time is limited, they decide that they will attack exactly two computers A and B in the network, and as a result, other computers won't be able to transmit messages via A and B . The attack is considered successful if there are at least two computers (other than A and B ) that disconnected after the attack.

As they want to minimize the risk of being captured, they need to find the easiest way to destroy the safety system. However, a brief study of the network indicates that there are many ways to achieve their objective; therefore they kidnapped the computer expert, you, to help with the calculation. To simplify the problem, you are only asked to tell them how many ways there are to destroy the safety system.

InputThere are multiple test cases in the input file. Each test case starts with two integers N (3<=N<=1000) and M (0<=M<=10000) , followed by M lines describing the connections between the N computers. Each line contains two integers A , B (1<=A, B<=N) , which indicates that computer A and B are connected by a bidirectional cable.

There is a blank line between two successive test cases. A single line with N = 0 and M = 0 indicates the end of input file.OutputFor each test case, output one integer number representing the ways to destroy the safety system in the format as indicated in the sample output.Sample Input

4 4
1 2
2 3
3 4
4 1 7 9
1 2
1 3
2 3
3 4
3 5
4 5
5 6
5 7
6 7 0 0

Sample Output

Case 1: 2
Case 2: 11 题意:
删除两个点,使图不联通,求方案数.
思路:
枚举第一个点,用割点判断第二点就行了.
注意删除第一个点之后剩下联通块内部点的个数为1的情况.
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime> #define fuck(x) cerr<<#x<<" = "<<x<<endl;
#define debug(a, x) cerr<<#a<<"["<<x<<"] = "<<a[x]<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 0x3f3f3f3f;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); int Head[maxn],cnt;
struct edge{
int Next,v;
}e[maxm];
void add_edge(int u,int v){
e[cnt].Next=Head[u];
e[cnt].v=v;
Head[u]=cnt++;
} int Index = ;
int dfn[maxn], low[maxn], root;
bool vis[maxn];
int exc,num;
void dfs(int cur, int father) {
if(cur==exc){ return;}
num++;
int child = ;
Index++;
dfn[cur] = Index;
low[cur] = Index;
for (int k = Head[cur]; k != -; k = e[k].Next) {
if(e[k].v==exc){ continue;}
if (dfn[e[k].v] == ) {
child++;
dfs(e[k].v, cur);
low[cur] = min(low[cur], low[e[k].v]);
if (cur != root && low[e[k].v] >= dfn[cur]) {
if(!vis[cur]){
vis[cur]=true;
}
}
if (cur == root && child == ) {
if(!vis[cur]){
vis[cur]=true;
}
}
} else if (e[k].v != father) {
low[cur] = min(low[cur], dfn[e[k].v]);
}
}
} int main() {
// ios::sync_with_stdio(false);
// freopen("in.txt", "r", stdin); int n,m;
int cases=;
while (scanf("%d%d",&n,&m)!=EOF&&(n||m)){
cases++;
exc=cnt=Index=;
memset(Head,-, sizeof(Head));
memset(dfn,,sizeof(dfn));
memset(vis,,sizeof(vis));
for(int i=;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
add_edge(x,y);
add_edge(y,x);
} int ans=;
for(int i=;i<=n;i++) {
memset(dfn, , sizeof(dfn));
memset(vis, , sizeof(vis));
Index=;
exc = i;
int d1,d2;
int tot = ;
dfn[exc]=-;
d1=d2=-;
for(int j=;j<=n;j++){
if(!dfn[j]&&j!=exc){
tot++;
root=j;
num=;
dfs(j,j);
if(d1==-)d1=num;
else d2=num;
}
}
if(tot==){//如果删除的点不是割点,那么和它组合的一定是割点(删除之后)
for(int j=;j<=n;j++){
ans+=vis[j];
}
}else if(tot==){//这个点是割点,而且把原图分为了两部分
if(d1==d2&&d1==){
ans+=;
}//如果两部分的点数都是1,那么对答案没有贡献
else if(d1==||d2==){ans+=n-;}//有一个是1,就不能删除那个独苗
else ans+=n-;//既然都不是1,那就可以随便删除
}else{
ans+=n-;//有三块,可以任意删除
}
}printf("Case %d: %d\n",cases,ans/); } return ;
}

HDU - 3671 Boonie and Clyde (图的割点)的更多相关文章

  1. 图的割点 | | jzoj【P1230】 | | gdoi | |备用交换机

    写在前面:我真的不知道图的割点是什么.... 看见ftp图论专题里面有个dfnlow的一个文档,于是怀着好奇的心情打开了这个罪恶的word文档,,然后就开始漫长的P1230的征讨战.... 图的割点是 ...

  2. 图的割点 桥 双连通(byvoid)

    [点连通度与边连通度] 在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合.一个图的点连通度的定义为,最小割点集 ...

  3. Tarjan算法:求解图的割点与桥(割边)

    简介: 割边和割点的定义仅限于无向图中.我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低.Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边 ...

  4. Tarjan算法:求解无向连通图图的割点(关节点)与桥(割边)

    1. 割点与连通度 在无向连通图中,删除一个顶点v及其相连的边后,原图从一个连通分量变成了两个或多个连通分量,则称顶点v为割点,同时也称关节点(Articulation Point).一个没有关节点的 ...

  5. HDU - 4587 TWO NODES (图的割点)

    Suppose that G is an undirected graph, and the value of stab is defined as follows: Among the expres ...

  6. HDU 1045 Fire Net(图匹配)

    题目大意: 这个是以前做过的一道DFS题目,当时是完全暴力写的. 给你一个N代表是N*N的矩阵,矩阵内 ‘X’代表墙, ‘.’代表通道. 问这个矩阵内最多可以放几个碉堡, 碉堡不能在同一行或者同一列, ...

  7. HDU 4444 Walk (离散化建图+BFS+记忆化搜索) 绝对经典

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4444 题意:给你一些n个矩形,给你一个起点,一个终点,要你求从起点到终点最少需要转多少个弯 题解:因为 ...

  8. hdu 3061 hdu 3996 最大权闭合图 最后一斩

    hdu 3061 Battle :一看就是明显的最大权闭合图了,水提......SB题也不说边数多少....因为开始时候数组开小了,WA....后来一气之下,开到100W,A了.. hdu3996. ...

  9. hdu 4738 Caocao's Bridges 图--桥的判断模板

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

随机推荐

  1. PHPCMS快速建站系列之常用标签

    <span class="Nmore"><a href="/index.php?m=content&c=index&a=lists&am ...

  2. More Effective C++: 05技术(30-31)

    30:Proxy classes 代理类 在C++中使用变量作为数组大小是违法的,也不允许在堆上分配多维数组: int data[dim1][dim2]; int *data = new int[di ...

  3. 判断字符s是否为正整数和正小数

    下面一段代码是判断是否为正整数和正小数的:

  4. UVA_445:Marvelous Mazes

    Language:C++ 4.8.2 #include<stdio.h> #include<string.h> #include<ctype.h> int main ...

  5. 巨蟒python全栈开发-第11阶段 ansible3_1入门四个模块command&shell&script&copy

    大纲 1.系统安装与机器克隆 2.ansible介绍和host-pattern格式 3.command模块 4.shell模块 5.script模块 6.copy模块

  6. @NOIP2018 - D2T3@ 保卫王国

    目录 @题目描述@ @题解@ @代码@ @题目描述@ Z 国有n座城市,n−1 条双向道路,每条双向道路连接两座城市,且任意两座城市 都能通过若干条道路相互到达. Z 国的国防部长小 Z 要在城市中驻 ...

  7. phpexecl

    <?phpnamespace Admin\Controller;use Think\Controller;class InoutController extends Controller { p ...

  8. CNN滤波器

    CNN 的第一步是把图片分成小块.我们通过选取一个给定宽度和高度的滤波器来实现这一步. 滤波器会照在图片的小块 patch (图像区块)上.这些 patch 的大小与滤波器一样大.   如之前视频所示 ...

  9. windows 和 linux 安装 tensorflow

    安装 跟往常一样,我们用 Conda 来安装 TensorFlow.你也许已经有了一个 TensorFlow 环境,但要确保你安装了所有必要的包. OS X 或 Linux 运行下列命令来配置开发环境 ...

  10. SLS机器学习最佳实战:日志聚类+异常告警

    1.手中的锤子都有啥? 围绕日志,挖掘其中更大价值,一直是我们团队所关注.在原有日志实时查询基础上,今年SLS在DevOps领域完善了如下功能: 上下文查询 实时Tail和智能聚类,以提高问题调查效率 ...