LTE (Lifting The Exponent Lemma)引理是一个解指数型不定方程的强力工具。它在Olympiad folklore非常知名,虽然它的起源已经无从查找了。它和Hensel’s lemma关系密切,无论命题还是证明。本文证明它并给出它的一些应用。
我们可以用本引理解决大量的指数型不定方程问题。尤其是我们可以找到某些质因子的时候。有时LTE引理甚至能秒杀一道题。这个引理告诉我们如何求一个奇素数p在a^n-b^n中的次数。这个引理的证明是完全初等的而且对一般竞赛生不难理解。

我们记v[p](n)为p在n中的次数,。
或者说如果v[p](n)=a则p^a|n但把a换成更大的就不行。如果n不是p的倍数,v[p](n)=0
容易知道v[p](ab)=v[p](a)+v[p](b)以及v[p](a+b)≥min{v[p](a),v[p](b)}

先证明两个小引理(这两个引理中p都是奇素数)
1.如果p|x-y,(p,n)=1,(p,x)=1,那么
v[p](x^n-y^n)=v[p](x-y)
由于x^n-y^n=(x-y)(x^(n-1)+x^(n-2)y+…+y^(n-1))
而在mod p意义下,由于x=y,有
x^(n-1)+x^(n-2)y+…+y^(n-1)=n*x^(n-1)≠0
(每个加项相同,共n项)
因此v[p](x^(n-1)+x^(n-2)y+…+y^(n-1))=0
因此v[p](x^n-y^n)=v[p](x-y)+v[p](x^(n-1)+x^(n-2)y+…+y^(n-1))=v[p](x-y)
2.如果p|x-y,(p,x)=1,那么
v[p](x^p-y^p)=v[p](x-y)+1
假设x=y+k*p^a,其中(k,p)=1,则a=v[p](x-y)
由二项式定理(这里的C(m,n)表示组合数),
x^p-y^p=(x+k*p^a)^p-x^p
=(x^p+p*x^(p-1)*k*p^a+C(p,2)*x^(p-2)*k^2*p^(2a)+C(p,3)*x^(p-3)*k^2*p^(3a)+…)-x^p
=p^(a+1)*x^(p-1)*k+S
容易验证S的每一项都是p^(2a+1)的倍数
所以这个数是p^(a+1)的倍数但不是p^(a+2)的倍数(S是但p^(a+1)*x^(p-1)*k不是)
故v[p](x^p-y^p)=a+1=v[p](x-y)+1

好了,下面献上LTE引理:
如果p是奇素数,p|x-y,(p,x)=1,那么
v[p](x^n-y^n)=v[p](x-y)+v[p](n)
不断把n中的因子p搬到外面变成+1,搬完了就证完了。。。
对于n是奇数,我们还有

v[p](x^n+y^n)=v[p](x+y)+v[p](n)
这是通过把y理解成-y得到的
p=2的情况没啥用处,就不搬运了。。。

应用
1.求所有正整数n使得存在正整数x,y,k满足(x,y)=1,k>1使得3^n=x^k+y^k
解答
如果k是偶数,由于x^k和y^k mod 3都是1或0,所以都是0,这与(x,y)=1矛盾
如果k是奇数,则v[3](x^k+y^k)=v[3](k)+v[3](x+y)=v[3](k(x+y))
因此x^k+y^k≤k(x+y)(左边完全是3的幂次,右边还可能有别的),
x^(k-1)-x^(k-2)y+…+y^(k-1)≤k……(1)
显然x≠y,不妨设x>y,则
x^(k-1)-x^(k-2)*y=x^(k-2)(x-y)≥x≥2
x^(k-3)-x^(k-4)*y=x^(k-4)(x-y)≥x≥2
总之就是把(1)的前k-1项两两配对,每一对的和都不小于2
又y^(k-1)≥1,全加起来就至少是项数k
而且如果x≥3或者k>3,等号就取不到
因此x=2,y=1,k=3验证知此时n=2
2.已知p是一个奇素数,正整数x,y,m>1,证明:如果(x^p+y^p)/2=((x+y)/2)^m,则m=p
解答
由幂平均不等式m≥p
假设(x,y)=d,x=du,y=dv
则(u^p+v^p)/2=d^(m-p)*((u+v)/2)^m
任取u+v的素因子q
如果q为奇数
则v[p]((u^q+v^q)/2)=v[q](u+v)+v[q](p)≤v[q](u+v)+1≤2v[q](u+v)
而m≥p≥3,有
v[q](d^(m-p)*((u+v)/2)^m)≥v[q](((u+v)/2)^m)=m*v[q](u+v)
矛盾!
如果q只能为2,u+v就是2的幂次,假设u+v=2^a
由于(u,v)=1,u,v均为奇数
又u^(p-1)-u^(p-2)v+…+v^(p-1)共p项,为奇数
有v[2]((u^p+v^p)/2)=v[2]((u+v)/2)=a-1
又v[2](d^(m-p)*((u+v)/2)^m)≥v[2]((u+v)/2)^m)=m(a-1)
因此a=1,u=v=1,这说明x=y,进而m=p
3.求x^2009+y^2009=7^z的全部正整数解
解答
由费马小定理7|(x^2009+y^2009)-(x+y),故7|(x+y)
故v[7](x^2009+y^2009)=v[7](2009)+v[7](x+y)=v[7](49(x+y))
因此x^2009+y^2009=7^v[7](x^2009+y^2009)=7^v[7](49(x+y))≤49(x+y)
(显然p^v[p](x)≤x)
而不等式x^2009+y^2009≤49(x+y)在x,y不全等于1时显然不成立
而且x=y=1也不成立
因此,无解
4.求所有正整数a使得对所有正整数n,4(a^n+1)是完全立方数
解答
a=1显然可以
若a>1,则a为奇数(偶立方数都是8的倍数)
所以a^2+1是4k+2型数,有一个奇素因数p
假设v[p](a^2+1)=3k
那么v[p](4(a^(2p)+1))=3k+1
这不可能(由于立方数对所有素数的次数都是3的倍数)

话说此题还有一个很神奇的做法:
如果a>1,(4(a^9+1))/(4(a^3+1))=a^6-a^3+1可以被夹在两个相邻立方数之间……

练习题
1.求所有正整数a,b>1使得a^b|b^a-1
2.求(n-1)!+1=n^m的正整数解(n,m)
3.是否存在正整数n使得n|2^n+1且n有恰好10086个素因数
4.实数a,b满足若对所有正整数n,a^n-b^n是整数,证明a,b都是整数
5.正整数a>b>1和n满足b是奇数和a^n|b^n-1,证明:a^b>3^n/n
6.求所有正整数n,使得n^2|2^n+1
7.给定正整数u>1,证明:至多存在有限个三元正整数组(n,a,b)满足n!=u^a-u^b

LTE引理——解决数论竞赛题的利器的更多相关文章

  1. 解决checkbox的attr(checked)一直为undefined问题

    需要做个一个全选的checkbox功能,遇到checkbox的attr("checked")一直为undefined,下面与大家分享下最终的解决方案   最近本屌丝应项目开发需求, ...

  2. 置换群、Burnside引理与等价类计数问题

    置换群.Burnside引理与等价类计数问题 标签: 置换群 Burnside引理 置换 说说我对置换的理解,其实就是把一个排列变成另外一个排列.简单来说就是一一映射.而置换群就是置换的集合. 比如\ ...

  3. RLS自适应滤波器中用矩阵求逆引理来避免求逆运算

    在RLS自适应滤波器的实现过程中,难免不涉及矩阵的求逆运算.而求逆操作双是非常耗时的,一个很自然的想法就是尽可能的避免直接对矩阵进行求逆运算.那么,在RLS自适应滤波器的实现中,有没有一种方法能避免直 ...

  4. 【解决】Android 2.x 不支持overflow、position:fixed解决方案【转】

    Android 2.x和IOS5以下都不支持overflow:auto属性(position:fixed也不支持). 移动端浏览器兼容性和PC端相比,有过之而无不及.操作系统版本及各式浏览器和各式的屏 ...

  5. [BZOJ1547]周末晚会:Burnside引理+DP

    分析 Attention!这道题的模数是\(1e8+7\). 注意到循环同构会被认为是同一种方案,我们可以把顺时针旋转每个人的位置作为置换,容易发现这些置换一定会形成一个置换群,于是题目所求的所有合法 ...

  6. 近期概况&总结

    下午考完英语的学考就要放假啦,是衡中的假期啊QAQ 所以灰常的激动,一点也不想写题(我不会告诉你其实假期只有一个晚上.. 自从CTSC&APIO回来之后就一直在机房颓颓颓,跟着zcg学了很多新 ...

  7. 《程序设计中的组合数学》——polya计数

    我们在高中的组合数学中常常会碰到有关涂色的问题,例如:用红蓝两种颜色给正方形的四个顶点涂色,会有几种不同的方案.在当时,我们下意识的认为,正方形的四个顶点是各不相同的,即正方形是固定的.而实际上我们知 ...

  8. Edward Frenkel关于几何化朗兰兹纲领的采访

    本文来自:菲尔兹奖座谈会 博客 Edward Frenkel教授的主要研究方向是数学与量子物理中的对称.他现在在做的许多问题都与朗兰兹纲领有关.他现在是加州大学伯克利分校的数学教授. 在今年的菲尔兹奖 ...

  9. sscanf与正则表达式(转)

    今天翻google reader的时候看到这样一篇文章,介绍的是sscanf的高级用法.直到今天我才知道sscanf是可以直接用正则表达式的,惭愧. 在msdn中sscanf的声明如下 int ssc ...

随机推荐

  1. [PAT] A1022 Digital Library

    [题目大意] 给出几本书的信息,包括编号,名字,出版社,作者,出版年份,关键字:然后给出几个请求,分别按照1->名字,2->出版社等对应信息查询符合要求的书的编号. [思路] 模拟. [坑 ...

  2. 安全 - CORS(脚本请求等)

    功能概述 出于安全原因,浏览器限制从脚本内发起的跨域HTTP请求 或 拦截了跨域请求的结果. 例如,XMLHttpRequest和Fetch API遵循同源策略. 这意味着使用这些API的Web应用程 ...

  3. springboot+druid+mybatis plus的多数据源配置

    思路 yml中配置多个数据源信息 通过AOP切换不同数据源 配合mybatis plus使用 POM依赖 <dependency> <groupId>org.springfra ...

  4. oracle Insert 一次插入多条记录

    oracle Insert 一次插入多条记录有两种方法: 1)Insert All Into table_name values ... insert all into table_name valu ...

  5. 2018 HBCPC 菜鸡选手记

    我果然太菜了 A B--T2 D--T4 C--T3 F 我果然太菜了 作为学校最菜的队员,今天下午被虐惨了. 一下午才做A-D四道题 官方题解链接 晚上吃完饭再去看. A 队友A的不清楚.没看题. ...

  6. java 日期累加,如何求一年后日期,一月后日期,一周后日期和一天后日期

    import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.Calendar; import ja ...

  7. mybatis第二天01

    MyBatis第二天01 1.高级结果映射 1.1根据视频案例,分析表之间的关系 数据模型分析 1. 明确每张表存储的信息 2. 明确每张表中关键字段(主键.外键.非空) 3. 明确数据库中表与表之间 ...

  8. 02-SV数据类型

    1.数据类型 内建数据类型:逻辑(logic)类型.双状态数据类型(bit,byte,shortint,int,longint).四状态数据类型(integer,time,real) 其他:定宽数组. ...

  9. shell变量内字符替换和变量字符修改

    vi test.sh a= #将${a}里的第一个123替换为321 b=${a//}; echo "echo variable a" echo $a echo "ech ...

  10. AntDesign(React)学习-12 使用Table

    AntDesign(Vue)版的Table中使用图片https://www.cnblogs.com/zhaogaojian/p/11119762.html 之前在使用VUE版Table时,使用大图片时 ...