• 峰度(Kurtosis)

    • 定义

峰度又称峰态系数,表征概率密度分布曲线在平均值处峰值高低的特征数,即是描述总体中所有取值分布形态陡缓程度的统计量。直观看来,峰度反映了峰部的尖度。这个统计量需要与正态分布相比较。

    • 公式

定义上峰度是样本的标准四阶中心矩(standardized 4rd central moment)

随机变量的峰度计算方法为随机变量的四阶中心矩与方差平方的比值

具体计算公式为:

    • 性质      

峰度 =0表示该总体数据分布与正态分布的陡缓程度相同;

峰度 >0表示该总体数据分布与正态分布相比较为陡峭,为尖顶峰

峰度 <0表示该总体数据分布与正态分布相比较为平坦,为平顶峰

峰度的绝对值数值越大表示其分布形态的陡缓程度与正态分布的差异程度越大。

  • 偏度(Skewness)

    • 定义

偏度与峰度类似,它也是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性的特征统计量。

    •  公式  

定义上偏度是样本的标准三阶中心矩(standardized 3rd central moment)

偏度的具体计算公式为:

    • 性质  

这个统计量同样需要与正态分布相比较,

偏度 =0表示其数据分布形态与正态分布的偏斜程度相同;

偏度 >0表示其数据分布形态与正态分布相比为正偏(右偏),即有一条长尾巴拖在右边,数据右端有较多的极端值,数据均值右侧的离散程度强;

偏度 <0表示其数据分布形态与正态分布相比为负偏(左偏),即有一条长尾拖在左边,数据左端有较多的极端值,数据均值左侧的离散程度强

偏度的绝对值数值越大表示其分布形态的偏斜程度越大。


 

区别 |峰度(Kurtosis)和偏度(Skewness)的更多相关文章

  1. 统计学中数据分布的偏度(skewness)和峰度(kurtosis)

  2. 机器学习数学|偏度与峰度及其python实现

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 矩 对于随机变量X,X的K阶原点矩为 \[E( ...

  3. Statistical Concepts and Market Returns

    Statistical Concepts and Market Returns Categories of statistics Descriptive statistics: used to sum ...

  4. [转]概率基础和R语言

    概率基础和R语言 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语 ...

  5. 判断数据是否服从某一分布(二)——简单易用fitdistrplus包

    一.对数据的分布进行初步判断     1.1 原理 对于不同的分布,有特定的偏度(skewness)和峰度(kurtosis),正态分布.均匀分布.逻辑斯谛分布.指数分布的偏度和峰度都是特定的值,在偏 ...

  6. 用Python学分析:集中与分散

    散点图进阶,结合箱体图与直方图对数据形成全面的认识 描述数据集中趋势的分析量: 均值 - 全部数据的算术平均值 众数 - 一组数据中出现次数最多的变量值 中位数 - 一组数据经过顺序排列后处于中间位置 ...

  7. 基于R语言的数据分析和挖掘方法总结——描述性统计

    1.1 方法简介 描述性统计包含多种基本描述统计量,让用户对于数据结构可以有一个初步的认识.在此所提供之统计量包含: 基本信息:样本数.总和 集中趋势:均值.中位数.众数 离散趋势:方差(标准差).变 ...

  8. 《R语言实战》读书笔记 第七章--基本统计分析

    在导入数据并且将数据进行组织和初步可视化以后,需要对数据进行分布探索和两两关系分析等.主要内容有描述性统计分析.频数表和列联表.相关系数和协方差.t检验.非参数统计. 7.1描述性统计分析 7.1.1 ...

  9. Beta分布从入门到精通

    近期一直有点小忙,可是不知道在瞎忙什么,最终有时间把Beta分布的整理弄完. 以下的内容.夹杂着英文和中文,呵呵- Beta Distribution Beta Distribution Defini ...

随机推荐

  1. mysql的索引方法btree和hash的区别

    原文链接: http://www.91w.net/database/330.html 1. Hash索引: Hash 索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引 ...

  2. vue之TodoMVC项目实战

    一.初始化项目 1.下载模板 进入github中https://github.com/tastejs/todomvc-app-template,并且在命令行将其clone下来 git clone ht ...

  3. Vue Router基础

    路由 安装 vue-router 起步 <router-link to="/foo">Go to Foo</router-link> <router- ...

  4. C# 与 C/C++ 网络传输字符串解决方案

    { 不管你的数据加没加密,只要有中文,请转16进制后再处理,把16进制再转为GB2312的byte再发送, 接收的话同样 c++ 发送时转16进制再发送,c#16进制转字符串后再转GB2312就可以了 ...

  5. 【设计】schema

    Schema:表的模式:   设计数据的表,索引,以及表和表的关系 在数据建模的基础上将关系模型转为数据库表 满足业务模型需要基础上根据数据库和应用特点优化表结构   关系模型图:   Schema关 ...

  6. PHP rand() 函数

    定义和用法 rand() 函数生成随机整数. 提示:如果您想要一个介于 10 和 100 之间(包括 10 和 100)的随机整数,请使用 rand (10,100). 提示:mt_rand() 函数 ...

  7. bzoj1004题解

    [题意分析] 给N个元素染色,可以在定置换群的作用下互相转化的染色方案算相同的,问本质不同的染色方案数. [解题思路] 引理:Burnside定理 设集合S=[1,n]∩N,记等价类数为L,给定S上的 ...

  8. NX二次开发-UFUN单对象选择对话框UF_UI_select_with_single_dialog

    #include <uf.h> #include <uf_ui.h> ], void* user_data, UF_UI_selection_p_t select) { if ...

  9. Python-爬虫-HTTP协议请求之GET请求

    我们在百度搜索时,输入关键词,比如“hello”,URL发生变化,如下: https://www.baidu.com/s?wd=hello&rsv_spt=1&rsv_iqid=0xf ...

  10. hexo next主题深度优化(二),懒加载。

    文章目录 tip:没有耐心的可以直接看:正式在hexo next中加入懒加载(最下面) 废话 背景 懒加载简单介绍 引入js 重点!敲黑板了!!! 完善懒加载函数 懒加载函数可配置的参数 正式在hex ...