题目链接:https://ac.nowcoder.com/acm/contest/883/H

题目大意

  给定 N 个不同的整数点,N 为偶数,求一条直线,这条直线能把这 N 个点对半分开,输出这条直线经过的两个整点坐标。

分析1

  在无穷远处选一个点(我选两个互质的质数),设为$(x, y)$,然后极角排序,然后取最中间两个点的中点,设为$(\frac{a}{2}, \frac{b}{2})$,由于题目要求整数点,通过求出直线方程,可以发现整数点$(3x - a, 3y - b)$也在直线上,于是答案就出来了。

代码如下

 #include <bits/stdc++.h>
using namespace std; #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
#define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // ?? x ?????? c
#define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
#define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper); #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T>
ostream &operator<<(ostream &out, vector<T> &v) {
Rep(i, v.size()) out << v[i] << " \n"[i == v.size()];
return out;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} inline int gc(){
static const int BUF = 1e7;
static char buf[BUF], *bg = buf + BUF, *ed = bg; if(bg == ed) fread(bg = buf, , BUF, stdin);
return *bg++;
} inline int ri(){
int x = , f = , c = gc();
for(; c<||c>; f = c=='-'?-:f, c=gc());
for(; c>&&c<; x = x* + c - , c=gc());
return x*f;
} template<class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
} inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
} //min <= aim <= max
template<typename T>
inline bool BETWEEN(const T aim, const T min, const T max) {
return min <= aim && aim <= max;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef pair< int, int > PII;
typedef pair< int, PII > PIPII;
typedef pair< string, int > PSI;
typedef pair< int, PSI > PIPSI;
typedef set< int > SI;
typedef set< PII > SPII;
typedef vector< int > VI;
typedef vector< double > VD;
typedef vector< VI > VVI;
typedef vector< SI > VSI;
typedef vector< PII > VPII;
typedef map< int, int > MII;
typedef map< int, string > MIS;
typedef map< int, PII > MIPII;
typedef map< PII, int > MPIII;
typedef map< string, int > MSI;
typedef map< string, string > MSS;
typedef map< PII, string > MPIIS;
typedef map< PII, PII > MPIIPII;
typedef multimap< int, int > MMII;
typedef multimap< string, int > MMSI;
//typedef unordered_map< int, int > uMII;
typedef pair< LL, LL > PLL;
typedef vector< LL > VL;
typedef vector< VL > VVL;
typedef priority_queue< int > PQIMax;
typedef priority_queue< int, VI, greater< int > > PQIMin;
const double EPS = 1e-;
const LL inf = 0x7fffffff;
const LL infLL = 0x7fffffffffffffffLL;
const LL mod = 1e9 + ;
const int maxN = 1e3 + ;
const LL ONE = ;
const LL evenBits = 0xaaaaaaaaaaaaaaaa;
const LL oddBits = 0x5555555555555555; template<typename T>
struct Point{
T X,Y;
Point< T >(T x = ,T y = ) : X(x), Y(y) {}
inline T setXY(T x, T y) { return X = x, Y = y; } inline bool operator== (const Point<T>& x) const { return X == x.X && Y == x.Y; }
inline bool operator< (const Point<T>& x) const {
if(Y == x.Y)return X < x.X;
return Y < x.Y;
}
inline bool operator> (const Point<T>& x)const{return x < *this;} inline Point<T> operator* (const T& k) { return Point<T>(k*X, k*Y); }
inline Point<T> operator/ (const T& k) { return Point<T>(X/k, Y/k); }
inline Point<T> operator+ (const Point<T>& x) { return Point<T>(X+x.X,Y+x.Y); }
inline Point<T> operator- (const Point<T>& x) { return Point<T>(X-x.X,Y-x.Y); } T operator^(const Point<T> &x) const { return X*x.Y - Y*x.X; }
T operator*(const Point<T> &x) const { return X*x.X + Y*x.Y; }
}; template<typename T>
istream &operator>> (istream &in, Point<T> &x) {
in >> x.X >> x.Y;
return in;
} template<typename T>
ostream &operator<< (ostream &out, const Point<T> &x) {
out << "(" << x.X << ", " << x.Y << ")" << endl;
return out;
} int T, N;
Point< LL > p[maxN];
Point< LL > a(-, -), b; inline bool cmp(const Point< LL > &x, const Point< LL > &y) {
return ((a - x) ^ (a - y)) > ;
} int main(){
//freopen("MyOutput.txt","w",stdout);
//freopen("input.txt","r",stdin);
//INIT();
scanf("%d", &T);
while(T--) {
scanf("%d", &N);
For(i, , N) cin >> p[i];
sort(p + , p + + N, cmp); Point< LL > b = a * - (p[N >> ] + p[(N >> ) + ]); printf("%lld %lld %lld %lld\n", a.X, a.Y, b.X, b.Y);
}
return ;
}

分析2(正解)

  其实没必要极角排序,只要进行一次二维偏序排序,选中间两个点,直接构造直线即可。

代码如下

 #include <bits/stdc++.h>
using namespace std; #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end())
#define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // ?? x ?????? c
#define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower);
#define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper); #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T>
ostream &operator<<(ostream &out, vector<T> &v) {
Rep(i, v.size()) out << v[i] << " \n"[i == v.size()];
return out;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} inline int gc(){
static const int BUF = 1e7;
static char buf[BUF], *bg = buf + BUF, *ed = bg; if(bg == ed) fread(bg = buf, , BUF, stdin);
return *bg++;
} inline int ri(){
int x = , f = , c = gc();
for(; c<||c>; f = c=='-'?-:f, c=gc());
for(; c>&&c<; x = x* + c - , c=gc());
return x*f;
} template<class T>
inline string toString(T x) {
ostringstream sout;
sout << x;
return sout.str();
} inline int toInt(string s) {
int v;
istringstream sin(s);
sin >> v;
return v;
} //min <= aim <= max
template<typename T>
inline bool BETWEEN(const T aim, const T min, const T max) {
return min <= aim && aim <= max;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef pair< int, int > PII;
typedef pair< int, PII > PIPII;
typedef pair< string, int > PSI;
typedef pair< int, PSI > PIPSI;
typedef set< int > SI;
typedef set< PII > SPII;
typedef vector< int > VI;
typedef vector< double > VD;
typedef vector< VI > VVI;
typedef vector< SI > VSI;
typedef vector< PII > VPII;
typedef map< int, int > MII;
typedef map< int, string > MIS;
typedef map< int, PII > MIPII;
typedef map< PII, int > MPIII;
typedef map< string, int > MSI;
typedef map< string, string > MSS;
typedef map< PII, string > MPIIS;
typedef map< PII, PII > MPIIPII;
typedef multimap< int, int > MMII;
typedef multimap< string, int > MMSI;
//typedef unordered_map< int, int > uMII;
typedef pair< LL, LL > PLL;
typedef vector< LL > VL;
typedef vector< VL > VVL;
typedef priority_queue< int > PQIMax;
typedef priority_queue< int, VI, greater< int > > PQIMin;
const double EPS = 1e-;
const LL inf = 0x7fffffff;
const LL infLL = 0x7fffffffffffffffLL;
const LL mod = 1e9 + ;
const int maxN = 1e3 + ;
const LL ONE = ;
const LL evenBits = 0xaaaaaaaaaaaaaaaa;
const LL oddBits = 0x5555555555555555; template<typename T>
struct Point{
T X,Y;
Point< T >(T x = ,T y = ) : X(x), Y(y) {}
inline T setXY(T x, T y) { return X = x, Y = y; } inline bool operator== (const Point<T>& x) const { return X == x.X && Y == x.Y; }
inline bool operator< (const Point<T>& x) const {
if(X == x.X) return Y < x.Y;
return X < x.X;
}
inline bool operator> (const Point<T>& x)const{return x < *this;} inline Point<T> operator* (const T& k) { return Point<T>(k*X, k*Y); }
inline Point<T> operator/ (const T& k) { return Point<T>(X/k, Y/k); }
inline Point<T> operator+ (const Point<T>& x) { return Point<T>(X+x.X,Y+x.Y); }
inline Point<T> operator- (const Point<T>& x) { return Point<T>(X-x.X,Y-x.Y); } T operator^(const Point<T> &x) const { return X*x.Y - Y*x.X; }
T operator*(const Point<T> &x) const { return X*x.X + Y*x.Y; }
}; template<typename T>
istream &operator>> (istream &in, Point<T> &x) {
in >> x.X >> x.Y;
return in;
} template<typename T>
ostream &operator<< (ostream &out, const Point<T> &x) {
out << "(" << x.X << ", " << x.Y << ")" << endl;
return out;
} int T, N;
Point< int > p[maxN]; int main(){
//freopen("MyOutput.txt","w",stdout);
//freopen("input.txt","r",stdin);
//INIT();
scanf("%d", &T);
while(T--) {
scanf("%d", &N);
For(i, , N) cin >> p[i];
sort(p + , p + + N); printf("%d %d %d %d\n", p[N >> ].X - , p[N >> ].Y + (int)1e8, p[(N >> ) + ].X + , p[(N >> ) + ].Y - (int)1e8);
}
return ;
}

2019 牛客多校第三场 H Magic Line的更多相关文章

  1. 2019牛客多校第三场H Magic Line 思维

    Magic Line 题意 给出n(偶)个整点 整点范围1000,找出一条直线,把n个点分成均等的两部分 分析 因为都是整数,并且范围比较小,所以直接按x排序找到在中间那一部分,并且把中间那一部分的点 ...

  2. [题解]Magic Line-计算几何(2019牛客多校第三场H题)

    题目链接:https://ac.nowcoder.com/acm/contest/883/H 题意: 给你偶数个点的坐标,找出一条直线将这n个点分成数量相等的两部分 并在这条直线上取不同的两个点,表示 ...

  3. 2019牛客多校第三场 F.Planting Trees

    题目链接 题目链接 题解 题面上面很明显的提示了需要严格\(O(n^3)\)的算法. 先考虑一个过不了的做法,枚举右下角的\((x,y)\),然后二分矩形面积,枚举其中一边,则复杂度是\(O(n^3 ...

  4. 2019牛客多校第三场D BigInteger——基础数论

    题意: 用  $A(n)$ 表示第 $n$ 个只由1组成分整数,现给定一个素数 $p$,求满足 $1 \leq i\leq n, 1 \leq j \leq m, A(i^j) \equiv 0(mo ...

  5. [2019牛客多校第三场][G. Removing Stones]

    题目链接:https://ac.nowcoder.com/acm/contest/883/G 题目大意:有\(n\)堆石头,每堆有\(a_i\)个,每次可以选其中两堆非零的石堆,各取走一个石子,当所有 ...

  6. [题解]Crazy Binary String-前缀和(2019牛客多校第三场B题)

    题目链接:https://ac.nowcoder.com/acm/contest/883/B 题意: 给你一段长度为n,且只有 ‘0’ 和 ‘1’ 组成的字符串 a[0,...,n-1].求子串中 ‘ ...

  7. 2019牛客多校第三场A Graph Games 分块思想

    题意:给你一张无向图,设s(x)为与x直接相连的点的集合,题目中有两种操作: 1:1 l r 将读入的边的序列中第l个到第r个翻转状态(有这条边 -> 没这条边, 没这条边 -> 有这条边 ...

  8. 启发式分治:2019牛客多校第三场 G题 Removing Stones

    问题可以转换为求有多少个区间数字的总和除2向下取整大于等于最大值.或者解释为有多少个区间数字的总和大于等于最大值的两倍(但是若区间数字总和为奇数,需要算作减1) 启发式分治: 首先按最大值位置分治,遍 ...

  9. 2019牛客多校第三场B-Crazy Binary String(前缀和+思维)

    Crazy Binary String 题目传送门 解题思路 把1记为1,把0记为-1,然后求前缀和,前缀和相等的就说明中间的01数一样.只要记录前缀和数值出现的位置即可更新出答案. 代码如下 #in ...

随机推荐

  1. Linux shell脚本编程if语句的使用方法(条件判断)

    if 语句格式if  条件then Commandelse Commandfi        别忘了这个结尾If语句忘了结尾fitest.sh: line 14: syntax error: unex ...

  2. contest-20191022

    盘王节 sol 可以发现只有打光御符或完全不打御符两种情况.分开考虑,不打的双指针扫描,用最大的配最小的 打光的可以先贪心的打,然后当成0有无限个, 祝著节 sol 考虑求出最小生成树,记边权和为su ...

  3. 删除maven项目后eclipse无法启动

    An internal error occurred during: "reload maven project". java.lang.NullPointerExceptio   ...

  4. 用java打开一个本地文件

    以下有三种方式打开 /** * 借助java.awt.Desktop打开 * @see 打开的目录或文件名中允许包含空格 */ private static void useAWTDesktop() ...

  5. 1067 Sort with Swap(0, i) (25 分)

    Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order ...

  6. 【WLAN常用语】—VAP

    文章摘自:https://forum.huawei.com/enterprise/zh/forum.php?mod=viewthread&tid=396533&page=1#pid22 ...

  7. JUC源码分析-集合篇(八)DelayQueue

    JUC源码分析-集合篇(八)DelayQueue DelayQueue 是一个支持延时获取元素的无界阻塞队列.队列使用 PriorityQueue 来实现. 队列中的元素必须实现 Delayed 接口 ...

  8. 如何发现 Redis 热点 Key ,解决方案有哪些?

    Java技术栈 www.javastack.cn 优秀的Java技术公众号 来源:http://t.cn/EAEu4to 一.热点问题产生原因 热点问题产生的原因大致有以下两种: 1.1 用户消费的数 ...

  9. python获取全部股票每日基本面指标,用于选股分析、报表展示等

    接口:daily_basic 更新时间:交易日每日15点-17点之间 描述:获取全部股票每日重要的基本面指标,可用于选股分析.报表展示等. 积分:用户需要至少300积分才可以调取,具体请参阅本文最下方 ...

  10. 53-Ubuntu-打包压缩-3-gzip压缩和解压缩介绍

    gzip tar与gzip命令结合可以实现文件打包和压缩. tar只负责打包文件,但不负责压缩. 用gzip压缩tar打包后的文件,其扩展名一般为xxx.tar.gz. 注:在Linux中,最常见的压 ...