Description###

大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

Input###

第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n

Output###

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

Sample Input###

1 11

4 2

Sample Output###

1

数据范围:

对于100%的数据,1 < = N , M < = 10000000


想法##

我们知道,对于一个数x,若y<x且y与x互质,那么y+x,y+2x,y+3x…都与x互质

那么对于这道题,N!内与M!互质的数的个数为

\[\begin{equation*}
\begin{aligned}
& \frac{N!}{M!} \varphi(M!) \\
=& \frac{N!}{M!} \times M! \times \frac{p1-1}{p1} \frac{p2-1}{p2}… (p1、p2…为M以内质数)\\
=& N! \times \frac{p1-1}{p1} \frac{p2-1}{p2}…
\end{aligned}
\end{equation*}
\]

这样就比较好了,预处理出 \(i!\) ,\(\frac{p1-1}{p1} \frac{p2-1}{p2}…\) 就行了


代码##

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath> using namespace std; typedef long long ll;
const int N = 10000005; int n,m,T,R; int inv[N],mi[N];
void init(){
inv[1]=1; mi[1]=1;
for(int i=2;i<N;i++){
if(i<R) inv[i]=((ll)inv[R%i]*(R-R/i))%R;
mi[i]=((ll)mi[i-1]*i)%R;
}
}
int prime[N],sum[N],pnum,p[N];
void getp(){
sum[1]=1;
for(int i=2;i<N;i++) p[i]=1;
for(int i=2;i<N;i++){
if(p[i]) {
prime[++pnum]=i;
sum[i]=(((ll)sum[i-1]*(i-1))%R*(ll)inv[i%R])%R;
}
else sum[i]=sum[i-1];
for(int j=1;j<=pnum && (ll)prime[j]*i<N;j++) {
p[i*prime[j]]=0;
if(i%prime[j]==0) break;
}
}
} int main()
{
int l,r,mid;
scanf("%d%d",&T,&R);
init();
getp();
while(T--){
scanf("%d%d",&n,&m);
printf("%lld\n",((ll)mi[n]*sum[m])%R);
} return 0;
}

[bzoj2186] [洛谷P2155] [Sdoi2008] 沙拉公主的困惑的更多相关文章

  1. 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告

    P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...

  2. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  3. P2155 [SDOI2008]沙拉公主的困惑

    \(\color{#0066ff}{ 题目描述 }\) 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大 ...

  4. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  5. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  6. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  7. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  8. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  9. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

随机推荐

  1. linux单 open 设备

    提供存取控制的强力方式是只允许一个设备一次被一个进程打开(单次打开). 这个技术最 好是避免因为它限制了用户的灵活性. 一个用户可能想运行不同的进程在一个设备上, 一 个读状态信息而另一个写数据. 在 ...

  2. 【30.43%】【codeforces 746C】Tram

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  3. Linux数据对齐

    编写可移植代码而值得考虑的最后一个问题是如何存取不对齐的数据 -- 例如, 如何读取 一个存储于一个不是 4 字节倍数的地址的 4 字节值. i386 用户常常存取不对齐数据项, 但是不是所有的体系允 ...

  4. 备战省赛组队训练赛第五场(UPC)

    中石油比赛链接 CF题目链接 E:博客 G:李继朋  博客 H:苗学林  贺振原 J:博客  苗学林 机房白给队全方位题解:A B E G I J

  5. FreeSql取多表数据

    该篇内容由个人博客点击跳转同步更新!转载请注明出处! 以文章随笔与分类为例. 表结构 部分字段如下,其他省略,为了展示一对多关联,一个分类下可以有多个文章.一个文章属于一个分类. blog_artic ...

  6. Linux中找不到ifconfig命令的解决方法

    1.ifconfig命令是设置或显示网络接口的程序,可以显示出我们机器的网卡信息,可是有些时候最小化安装CentOS等Linux发行版的时候会默认不安装ifconfig等命令,这时候你进入终端,运行i ...

  7. Android5_浅谈Java的package机制

    当代码量越来越大,类越来越多.尤其会增加同名类的风险.所以对类进行管理就显得非常重要. 包(package)机制是java中管理类的重要手段. 包名的命名方式:业内默认的做法是使用公司的网络域名的倒写 ...

  8. 三、解析class文件

    一.class文件 https://blog.csdn.net/tyyj90/article/details/78472986 https://blog.csdn.net/sinat_38259539 ...

  9. 面试官刁难:Java字符串可以引用传递吗?

    老读者都知道了,六年前,我从苏州回到洛阳,抱着一幅"海归"的心态,投了不少简历,也"约谈"了不少面试官,但仅有两三个令我感到满意.其中有一位叫老马,至今还活在我 ...

  10. $ [Contest \#4]$求和 思博题

    正解: 解题报告: 传送门$QwQ$ 一道看起来是数位$dp$其实并不是的题$QwQ$ 首先求$\sum_{l}^r$就变成$\sum_1^r-\sum_1^{l-1}$不说$QwQ$.现在就只要求$ ...