Description###

大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

Input###

第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n

Output###

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

Sample Input###

1 11

4 2

Sample Output###

1

数据范围:

对于100%的数据,1 < = N , M < = 10000000


想法##

我们知道,对于一个数x,若y<x且y与x互质,那么y+x,y+2x,y+3x…都与x互质

那么对于这道题,N!内与M!互质的数的个数为

\[\begin{equation*}
\begin{aligned}
& \frac{N!}{M!} \varphi(M!) \\
=& \frac{N!}{M!} \times M! \times \frac{p1-1}{p1} \frac{p2-1}{p2}… (p1、p2…为M以内质数)\\
=& N! \times \frac{p1-1}{p1} \frac{p2-1}{p2}…
\end{aligned}
\end{equation*}
\]

这样就比较好了,预处理出 \(i!\) ,\(\frac{p1-1}{p1} \frac{p2-1}{p2}…\) 就行了


代码##

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath> using namespace std; typedef long long ll;
const int N = 10000005; int n,m,T,R; int inv[N],mi[N];
void init(){
inv[1]=1; mi[1]=1;
for(int i=2;i<N;i++){
if(i<R) inv[i]=((ll)inv[R%i]*(R-R/i))%R;
mi[i]=((ll)mi[i-1]*i)%R;
}
}
int prime[N],sum[N],pnum,p[N];
void getp(){
sum[1]=1;
for(int i=2;i<N;i++) p[i]=1;
for(int i=2;i<N;i++){
if(p[i]) {
prime[++pnum]=i;
sum[i]=(((ll)sum[i-1]*(i-1))%R*(ll)inv[i%R])%R;
}
else sum[i]=sum[i-1];
for(int j=1;j<=pnum && (ll)prime[j]*i<N;j++) {
p[i*prime[j]]=0;
if(i%prime[j]==0) break;
}
}
} int main()
{
int l,r,mid;
scanf("%d%d",&T,&R);
init();
getp();
while(T--){
scanf("%d%d",&n,&m);
printf("%lld\n",((ll)mi[n]*sum[m])%R);
} return 0;
}

[bzoj2186] [洛谷P2155] [Sdoi2008] 沙拉公主的困惑的更多相关文章

  1. 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告

    P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...

  2. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  3. P2155 [SDOI2008]沙拉公主的困惑

    \(\color{#0066ff}{ 题目描述 }\) 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大 ...

  4. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  5. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  6. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  7. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  8. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  9. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

随机推荐

  1. Linux 内核注册一个 USB 驱动

    所有 USB 驱动必须创建的主要结构是 struct usb_driver. 这个结构必须被 USB 驱动填 充并且包含多个函数回调和变量, 来向 USB 核心代码描述 USB 驱动: struct ...

  2. 为何D3D11的几个矩阵需要转置?

    在学习D3D11的时候遇到一个问题,事情是这样的: D3D11引入了常量缓存(const buffer)用来实现数据的高速传输,这块儿buffer是CPU Only Write,GPU Only Re ...

  3. Lede定时重拨

    系统,计划任务,   0 4 * * * ifup wan 梅林定时重拨: #! /bin/sh #断开拨号连接 killall pppd #延时10秒 #重新拨号 pppd >& &a ...

  4. 叶子的颜色---经典树上dp

    挺简单的一个dp #include<iostream> #include<cstring> #include<cstdio> #include<algorit ...

  5. SpringBoot简介与快速入门

    一.SpringBoot简介 1.1 原有Spring优缺点分析 1.1.1 Spring的优点分析 Spring是Java企业版(Java Enterprise Edition,JEE,也称J2EE ...

  6. vue学习笔记(六)表单输入绑定

    前言 在上一章vue学习笔记(四)事件处理器这一篇博客的内容中,我们已经了解vue是如何绑定事件的,而本篇博客主要讲解的是vue中表单输入的绑定,通常我们自己提交信息的时候都是通过表单将信息到服务器的 ...

  7. 洛谷$P2050\ [NOI2012]$美食节 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 昂开始看到$jio$得,哇长得好像上一题嗷$QwQ$ 然后仔细康康数据范围,发现,哇好像要几万个点,,,显然就$GG$了 但感$jio$思路方向好对的亚子? ...

  8. Linux 文件系统 -- inode 笔记

    什么是 inode inode 的定义:Unix 文件系统中的一种数据结构,用来存储文件的元信息数据   文件在硬盘中的存储是以"块"(block)为单位的,常见的块大小是 4k ...

  9. 小白学 Python 爬虫(32):异步请求库 AIOHTTP 基础入门

    人生苦短,我用 Python 前文传送门: 小白学 Python 爬虫(1):开篇 小白学 Python 爬虫(2):前置准备(一)基本类库的安装 小白学 Python 爬虫(3):前置准备(二)Li ...

  10. pyspider遇到的第一个坑:Active Tasks成功,Results无内容

    #!/usr/bin/env python# -*- encoding: utf-8 -*-# Created on 2020-01-04 16:30:27# Project: HomeWork fr ...