PKUWC&SC 2018 刷题记录

minimax

线段树合并的题,似乎并不依赖于二叉树。

之前写的草率的题解在这里:PKUWC2018 minimax

Slay the Spire

注意到强化牌的强化倍数都是大于\(1\)的正整数,所以可以发现能强化就尽量强化。

用\(F(x,y)\)表示强化牌抽\(x\)张打出\(y\)张的倍率之和

用\(G(x,y)\)表示攻击牌抽\(x\)张打出\(y\)张的攻击之和

那么我们枚举抽了多少张攻击牌,在利用以上两个函数就可以算出答案了。

至于怎么计算那两个函数就看代码把。

#include<bits/stdc++.h>
#define rep(i,l,r) for(int i=l;i<=r;i++)
using namespace std;
const int sz=3e3+7;
const int mod=998244353;
int T;
int ans;
int n,m,k;
int a[sz],b[sz];
int inv[sz],fac[sz],ifac[sz];
int sum[sz],f[sz][sz],g[sz][sz];
void init(){
fac[0]=ifac[0]=1;
fac[1]=ifac[1]=inv[1]=1;
for(int i=2;i<sz;i++){
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
fac[i]=1ll*i*fac[i-1]%mod;
ifac[i]=1ll*inv[i]*ifac[i-1]%mod;
}
}
int C(int n,int m){
return 1ll*fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int F(int x,int y){
//抽出x张强化牌,y张打出去的效用和
if(x<y) return 0;
if(y==0) return C(n,x);
int ret=0;
rep(i,x-y+1,n-y+1)
ret=(ret+1ll*f[y][i]*C(i-1,x-y)%mod)%mod;
return ret;
}
int G(int x,int y){
//抽出x张攻击牌,y张打出去的效用和
if(x<y) return 0;
if(y==0) return 0;
int ret=0;
rep(i,x-y+1,n-y+1)
ret=(ret+1ll*g[y][i]*C(i-1,x-y)%mod)%mod;
return ret;
}
int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&m,&k);
rep(i,1,n) rep(j,1,n) f[i][j]=g[i][j]=0;
rep(i,1,n) scanf("%d",&a[i]);
rep(i,1,n) scanf("%d",&b[i]);
sort(a+1,a+n+1);
sort(b+1,b+n+1);
rep(i,1,n){
f[1][i]=a[i];
sum[i]=(sum[i-1]+f[1][i])%mod;
}
rep(i,2,n){
rep(j,1,n-i+1)
f[i][j]=1ll*a[j]*((sum[n]-sum[j]+mod)%mod)%mod;
rep(j,1,n)
sum[j]=(sum[j-1]+f[i][j])%mod;
}
rep(i,1,n){
g[1][i]=b[i];
sum[i]=(sum[i-1]+g[1][i])%mod;
}
rep(i,2,n){
rep(j,1,n-i+1)
g[i][j]=(1ll*b[j]*C(n-j,i-1)%mod+(sum[n]-sum[j]+mod)%mod)%mod;
rep(j,1,n)
sum[j]=(sum[j-1]+g[i][j])%mod;
}
ans=0;
rep(i,max(m-n,0),min(n,m)){
int j=m-i;
ans=(ans+1ll*F(i,min(i,k-1))*G(j,max(k-i,1))%mod)%mod;
}
printf("%d\n",ans);
}
}

斗地主

不可能写的,这辈子都不可能写的。

随机算法

枚举不可选择的集合\(S\)(不可选择的集合为现在已经有的独立集以及和这些独立集相连的点)

每次,选择一个新的点放入独立集,那么它会新增一些点不可选。

这些点只要放在放入独立集的新点的后面就可以了,它的贡献就是一个组合数。

然后就没了。

#include<bits/stdc++.h>
using namespace std;
const int sz=24;
const int mod=998244353;
int n,m;
int u,v,t;
int link[sz];
int bit[1<<20];
int fac[sz],ifac[sz],inv[sz];
int dp[1<<20],g[1<<20];
void init(){
fac[0]=ifac[0]=1;
fac[1]=ifac[1]=inv[1]=1;
for(int i=2;i<sz;i++){
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
fac[i]=1ll*i*fac[i-1]%mod;
ifac[i]=1ll*inv[i]*ifac[i-1]%mod;
}
}
int C(int n,int m){
return 1ll*fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
int main(){
init();
scanf("%d%d",&n,&m);
t=1<<n;
for(int i=1;i<=n;i++) link[i]|=1<<(i-1);
for(int i=1;i<=m;i++){
scanf("%d%d",&u,&v);
link[u]|=1<<(v-1);
link[v]|=1<<(u-1);
}
for(int i=1;i<t-1;i++) bit[i]=bit[i>>1]+(i&1);
dp[0]=1,g[0]=0;
for(int i=0;i<t;i++){
for(int j=1;j<=n;j++)
if(((i>>(j-1))&1)==0){
int s=i|link[j],p=s^i;
if(g[i]+1<g[s]) continue;
else if(g[i]+1==g[s])
dp[s]=(dp[s]+1ll*dp[i]*C(n-bit[i]-1,bit[p]-1)%mod*fac[bit[p]-1]%mod)%mod;
else{
g[s]=g[i]+1;
dp[s]=1ll*dp[i]*C(n-bit[i]-1,bit[p]-1)%mod*fac[bit[p]-1]%mod;
}
}
}
int ans=1ll*dp[t-1]*ifac[n]%mod;
printf("%d\n",ans);
}

猎人杀

你以为我会吗?

不,我不会。

随机游走

\(min-max\)容斥好题

之后再\(FMT\)一下就可以了。

#include<bits/stdc++.h>
#define go(x) for(int i=head[x];i;i=edge[i].nxt)
#define now edge[i].v
using namespace std;
const int sz=20;
const int mod=998244353;
int S;
int t;
int k,x;
int n,q,rt;
int u,v,cnt;
int head[sz];
int a[sz],b[sz],d[sz];
int s[1<<20],bit[1<<20];
struct Edge{
int v,nxt;
}edge[sz<<1];
int qpow(int x,int y){
int ret=1;
for(;y;y>>=1,x=1ll*x*x%mod) if(y&1) ret=1ll*x*ret%mod;
return ret;
}
void add(int u,int v){
edge[++cnt]=(Edge){v,head[u]};head[u]=cnt;
edge[++cnt]=(Edge){u,head[v]};head[v]=cnt;
}
void dfs(int x,int fa){
int asum=0,bsum=0;
go(x) if(now!=fa){
dfs(now,x);
asum=(asum+a[now])%mod;
bsum=(bsum+b[now])%mod;
}
if(S>>(x-1)&1) a[x]=b[x]=0;
else{
int inv=qpow((d[x]-asum+mod)%mod,mod-2);
a[x]=inv,b[x]=1ll*inv*(d[x]+bsum)%mod;
}
}
int main(){
scanf("%d%d%d",&n,&q,&rt);
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
d[u]++;
d[v]++;
add(u,v);
}
t=1<<n;
for(S=1;S<t;S++){
dfs(rt,0);
bit[S]=bit[S>>1]^(S&1);
s[S]=bit[S]?b[rt]:(mod-b[rt])%mod;
}
for(int i=1;i<t;i<<=1)
for(int j=0;j<t;j+=2*i)
for(int k=0;k<i;k++)
s[i+j+k]=(s[i+j+k]+s[j+k])%mod;
while(q--){
S=0;
scanf("%d",&k);
while(k--){
scanf("%d",&x);
S|=1<<(x-1);
}
printf("%d\n",s[S]);
}
}

真实排名

简单题,拿\(two-point\)随便搞搞就可以了。

之前写的草率的题解在这里:PKUSC2018 真实排名

最大前缀和

似乎又是一个状态压缩的\(DP\)?

好像是我很久以前写的(可能还是我给别人胡完让他帮我写的),已经不记得了。

先咕着。

主斗地

不好意思,我是不会写的。

星际穿越

不会,咕着。

神仙的游戏

把\(border\)变成循环节就可以了,再\(FFT\)一下就可以了。

之前写的草率的题解在这里:PKUSC2018 神仙的游戏

PKUSC

似乎并不难想。

只需要将每个点在多边形内的概率算出来再相加就可以得到期望了。

每个点的贡献大概就是以它到原点的距离作圆,看圆弧有多少在多边形内。

但是看到隔壁的ATS 大佬肝了快一天还没肝出来,我实在是缺乏勇气。

PKUWC&SC 2018 刷题记录的更多相关文章

  1. 刷题记录:[BUUCTF 2018]Online Tool

    目录 刷题记录:[BUUCTF 2018]Online Tool 一.知识点 1.escapeshellarg和escapeshellcmd使用不当导致rce 刷题记录:[BUUCTF 2018]On ...

  2. 刷题记录:[De1ctf] shell shell shell

    目录 刷题记录:[De1ctf] shell shell shell 一.知识点 1.源码泄露 2.正则表达式不完善导致sql注入 3.soapclient反序列化->ssrf 4.扫描内网 5 ...

  3. [BUUCTF-Pwn]刷题记录1

    [BUUCTF-Pwn]刷题记录1 力争从今天(2021.3.23)开始每日至少一道吧--在这里记录一些栈相关的题目. 最近更新(2021.5.8) 如果我的解题步骤中有不正确的理解或不恰当的表述,希 ...

  4. PE刷题记录

    PE刷题记录 PE60 / 20%dif 这道题比较坑爹. 所有可以相连的素数可以构成一张图,建出这张图,在其中找它的大小为5的团.注意上界的估算,大概在1W以内.1W内有1229个素数,处理出这些素 ...

  5. leetcode刷题记录--js

    leetcode刷题记录 两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但 ...

  6. Leetcode刷题记录(python3)

    Leetcode刷题记录(python3) 顺序刷题 1~5 ---1.两数之和 ---2.两数相加 ---3. 无重复字符的最长子串 ---4.寻找两个有序数组的中位数 ---5.最长回文子串 6- ...

  7. 刷题记录:[HarekazeCTF2019]encode_and_encode

    目录 刷题记录:[HarekazeCTF2019]encode_and_encode 一.知识点 JSON转义字符绕过 php伪协议 刷题记录:[HarekazeCTF2019]encode_and_ ...

  8. 刷题记录:[De1CTF 2019]Giftbox && Comment

    目录 刷题记录:[De1CTF 2019]Giftbox && Comment 一.知识点 1.sql注入 && totp 2.RCE 3.源码泄露 4.敏感文件读取 ...

  9. 刷题记录:[强网杯 2019]Upload

    目录 刷题记录:[强网杯 2019]Upload 一.知识点 1.源码泄露 2.php反序列化 刷题记录:[强网杯 2019]Upload 题目复现链接:https://buuoj.cn/challe ...

随机推荐

  1. AndroidStudio 搜索导入自己需要的库

    前言 在Androidx的库应用后,导致有需多系统组件库需要重新 implementation 升级为Androidx, 但是你可能会发现不知道怎么导入他们.  当然除了导入Android的组件库,还 ...

  2. Bugs Integrated, Inc.

    Bugs Integrated, Inc. 给出一个\(n\times m\)的矩形网格图,给出其中K个障碍物的位置,求其中最多能摆的\(2\times 3\)的矩形的个数,\(n\leq 150,m ...

  3. SQL Server 2008 install

    双击sql server 2008的.exe安装文件,进入[SQL Server 安装中心]. 2 点击界面左侧的[安装],然后点击右侧的[全新SQL Server 独立安装或向现有安装添加功能],进 ...

  4. 1002CSP-S模拟测试赛后总结

    晚上 我死了.T1全场AC只有我爆零了?? 还非常中二地写了个代码注释: 水题不假,但你不知道题水你更水么?? 碰到简单题就掉以轻心??还告诉自己不要掉以轻心…… 这下是真的滑天下之大稽了吧. 读题不 ...

  5. el-upload文件上传组件

    一.介绍 element-ui的组件之一,用来点击上传文件 官方是使用 before-upload 限制用户上传的图片格式和大小.但是某些浏览器不支持此方法,所以使用on-change来代替. 二.代 ...

  6. manacher/马拉车常用用法一览

    因为manacher算法把原来的字符串扩大了两倍,因此在应用时许多二级结论都非常不直观,现场推出来很麻烦,因此笔者在此做个简单整理,如果发现有错误或者有常用的我没有涉及到的,恳请在下方评论区指出,我会 ...

  7. Linux课程---12、linux中内存指令(top命令的作用是什么)

    Linux课程---12.linux中内存指令(top命令的作用是什么) 一.总结 一句话总结: top实时观察进程.内存和CPU情况 1.电脑出现反应慢情况,最先想到的是什么? 内存 2.linux ...

  8. Mysql保留字列表

      Mysql保留字列表.吠品整理. 尝试使用一个识别符,例如使用嵌入式MySQL 数据类型或函数名作为表名或列名,例如TIMESTAMP 或GROUP,会造成一个常见问题.允许你这样操作( 例如,A ...

  9. day 61 Django基础之django分页

      Django基础之django分页 一.Django的内置分页器(paginator) view   from django.shortcuts import render,HttpRespons ...

  10. c#使用打印机

    在windows应用程序中文档的打印是一项非常重要的功能,在以前一直是一个非常复杂的工作,Microsoft .net Framework的打印功能都以组件的方式提供,为程序员提供了很大的方便,但是这 ...