Anatomy of a MapReduce Job


In MapReduce, a YARN application is called a Job. The implementation of the Application Master provided by the MapReduce
framework is called MRAppMaster.

Timeline of a
MapReduce Job

This
is the timeline of a MapReduce Job execution:

  • Map Phase: several Map Tasks are executed
  • Reduce Phase: several Reduce Tasks are executed

Notice that the Reduce Phase may start before the end of Map Phase. Hence, an interleaving between them is possible.

Map Phase

We now focus our discussion on the Map Phase. A key decision is how many MapTasks the Application Master needs to start for the current job.

What does the user
give us?

Let’s take a step back. When a client submits an application, several kinds of information are provided to the YARN infrastucture. In particular:

  • a configuration: this may be partial (some parameters are not specified by the user) and in this case the default values are used for the job. Notice that these default values may be the ones chosen by a Hadoop provider
    like Amanzon.
  • a JAR containing:
    • map() implementation
    • a combiner implementation
    • reduce() implementation
  • input and output information:
    • input directory: is the input directory on HDFS? On S3? How many files?
    • output directory: where will we store the output? On HDFS? On S3?

The number of files inside the input directory is used for deciding the number of Map Tasks of a job.

How many Map Tasks?

The Application Master will launch one MapTask for each map split. Typically, there is a map split for each input file. If the input file is too big (bigger than the HDFS block size) then
we have two or more map splits associated to the same input file. This is the pseudocode used inside the method getSplits() of
the FileInputFormat class:

num_splits = 0
for each input file f:
remaining = f.length
while remaining / split_size > split_slope:
num_splits += 1
remaining -= split_size

where:

split_slope = 1.1
split_size =~ dfs.blocksize

Notice that the configuration parameter mapreduce.job.maps is
ignored in MRv2 (in the past it was just an hint).

MapTask Launch

The MapReduce Application Master asks to the Resource Manager for Containers needed by the Job: one MapTask container request for each MapTask (map split).

A container request for a MapTask tries to exploit data locality of the map split. The Application Master asks for:

  • a container located on the same Node Manager where the map split is stored (a map split may be stored on multiple nodes due to the HDFS replication factor);
  • otherwise, a container located on a Node Manager in the same rack where the the map split is stored;
  • otherwise, a container on any other Node Manager of the cluster

This is just an hint to the Resource Scheduler. The Resource Scheduler is free to ignore data locality if the suggested assignment is in conflict with the Resouce Scheduler’s goal.

When a Container is assigned to the Application Master, the MapTask is launched.

Map
Phase: example of an execution scenario

This is a possible execution scenario of the Map Phase:

  • there are two Node Managers: each Node Manager has 2GB of RAM (NM capacity) and each MapTask requires 1GB, we can run in parallel 2 containers on each Node Manager (this is the best scenario, the Resource Scheduler may decide
    differently)
  • there are no other YARN applications running in the cluster
  • our job has 8 map splits (e.g., there are 7 files inside the input directory, but only one of them is bigger than the HDFS block size so we split it into 2 map splits): we need to run 8 Map Tasks.

Map Task Execution
Timeline

Let’s
now focus on a single Map Task. This is the Map Task execution timeline:

  • INIT phase: we setup the Map Task
  • EXECUTION phase: for each (key, value) tuple inside the map split we run the map() function
  • SPILLING phase: the map output is stored in an in-memory buffer; when this buffer is almost full then we start
    (in parallel) the spilling phase in order to remove data from it
  • SHUFFLE phase: at the end of the spilling phase, we merge all the map outputs and package them for the reduce phase

MapTask: INIT

During the INIT phase, we:

  1. create a context (TaskAttemptContext.class)
  2. create an instance of the user Mapper.class
  3. setup the input (e.g., InputFormat.classInputSplit.classRecordReader.class)
  4. setup the output (NewOutputCollector.class)
  5. create a mapper context (MapContext.classMapper.Context.class)
  6. initialize the input, e.g.:
  7. create a SplitLineReader.class object
  8. create a HdfsDataInputStream.class object

MapTask: EXECUTION

The EXECUTION phase is performed by the run method
of the Mapper class. The user can override it, but by default it will start by calling the setup method:
this function by default does not do anything useful but can be override by the user in order to setup the Task (e.g., initialize class variables). After the setup, for each <key, value> tuple contained in the map split, the map() is
invoked. Therefore, map() receives: a key a value, and a mapper context. Using the context, a map stores
its output to a buffer.

Notice that the map split is fetched chuck by chunk (e.g., 64KB) and each chunk is split in several (key, value) tuples (e.g., using SplitLineReader.class).
This is done inside the Mapper.Context.nextKeyValue method.

When the map split has been completely processed, the run function
calls the clean method: by default, no action is performed but the user may decide to override
it.

MapTask: SPILLING

As seen in the EXECUTING phase, the map will
write (using Mapper.Context.write()) its output into a circular in-memory buffer (MapTask.MapOutputBuffer).
The size of this buffer is fixed and determined by the configuration parameter mapreduce.task.io.sort.mb (default:
100MB).

Whenever this circular buffer is almost full (mapreduce.map.
sort.spill.percent
: 80% by default), the SPILLING phase is performed (in parallel using a separate thread). Notice that if the splilling thread is too slow and the buffer is 100% full, then the map() cannot
be executed and thus it has to wait.

The SPILLING thread performs the following actions:

  1. it creates a SpillRecord and FSOutputStream (local
    filesystem)
  2. in-memory sorts the used chunk of the buffer: the output tuples are sorted by (partitionIdx, key) using a quicksort algorithm.
  3. the sorted output is split into partitions: one partition for each ReduceTask of the job (see later).
  4. Partitions are sequentially written into the local file.
How Many Reduce Tasks?

The number of ReduceTasks for the job is decided by the configuration parameter mapreduce.job.reduces.

What
is the partitionIdx associated to an output tuple?

The paritionIdx of an output tuple is the index of a partition. It is decided inside the Mapper.Context.write():

partitionIdx = (key.hashCode() & Integer.MAX_VALUE) % numReducers

It is stored as metadata in the circular buffer alongside the output tuple. The user can customize the partitioner by setting the configuration parameter mapreduce.job.partitioner.class.

When do we apply
the combiner?

If the user specifies a combiner then the SPILLING thread, before writing the tuples to the file (4), executes the combiner on the tuples contained in each partition. Basically, we:

  1. create an instance of the user Reducer.class (the one specified
    for the combiner!)
  2. create a Reducer.Context: the output will be stored on the
    local filesystem
  3. execute Reduce.run(): see Reduce Task description

The combiner typically use the same implementation of the standard reduce() function
and thus can be seen as a local reducer.

MapTask: end of EXECUTION

At the end of the EXECUTION phase, the SPILLING thread is triggered for the last time. In more detail, we:

  1. sort and spill the remaining unspilled tuples
  2. start the SHUFFLE phase

Notice that for each time the buffer was almost full, we get one spill file (SpillReciord +
output file). Each Spill file contains several partitions (segments).

MapTask: SHUFFLE

Reduce Phase

[…]

YARN and MapReduce
interaction

MapReduce 图解流程的更多相关文章

  1. MapReduce 图解流程超详细解答(1)-【map阶段】

    转自:http://www.open-open.com/lib/view/open1453097241308.html 在MapReduce中,一个YARN  应用被称作一个job, MapReduc ...

  2. MapReduce 图解流程超详细解答(2)-【map阶段】

    接上一篇讲解:http://blog.csdn.net/mrcharles/article/details/50465626 map任务:溢写阶段 正如我们在执行阶段看到的一样,map会使用Mappe ...

  3. MapReduce基本流程与设计思想初步

    1.MapReduce是什么? MapReduce是一种编程模型,用于大规模数据集的并行运算.它借用了函数式的编程概念,是Google发明的一种数据处理模型. 主要思想为:Map(映射)和Reduce ...

  4. MapReduce工作流程及Shuffle原理概述

    引言: 虽然MapReduce计算框架简化了分布式程序设计,将所有的并行程序均需要关注的设计细节抽象成公共模块并交由系统实现,用户只需关注自己的应用程序的逻辑实现,提高了开发效率,但是开发如果对Map ...

  5. MapReduce&#160;图解流程

    Anatomy of a MapReduce Job In MapReduce, a YARN application is called a Job. The implementation of t ...

  6. mapreduce执行流程

    角色描述:JobClient:执行任务的客户端JobTracker:任务调度器TaskTracker:任务跟踪器Task:具体的任务(Map OR Reduce) 从生命周期的角度来看,mapredu ...

  7. MapReduce处理流程

    MapReduce是Hadoop2.x的一个计算框架,利用分治的思想,将一个计算量很大的作业分给很多个任务,每个任务完成其中的一小部分,然后再将结果合并到一起.将任务分开处理的过程为map阶段,将每个 ...

  8. MapReduce运行流程分析

    研究MapReduce已经有一段时间了.起初是从分析WordCount程序开始,后来开始阅读Hadoop源码,自认为已经看清MapReduce的运行流程.现在把自己的理解贴出来,与大家分享,欢迎纠错. ...

  9. MapReduce执行流程及程序编写

    MapReduce 一种分布式计算模型,解决海量数据的计算问题,MapReduce将计算过程抽象成两个函数 Map(映射):对一些独立元素(拆分后的小块)组成的列表的每一个元素进行指定的操作,可以高度 ...

随机推荐

  1. sslforfree的证书合并成类似于certbot的ssl证书文件

    之前的證書都是通過 certbot的命令生成的,但是目前一個服務器太多個網站,太多個ssl證書,證書過期之後,目前是 通過 ssl for free 網站再生成新的 ssl證書,再次更新證書週期 Le ...

  2. C/C++ nullptr

    nullptr 关键字表示空指针值. 空指针值可用于指明对象句柄.内部指针或本机指针类型不指向对象. 结合使用 nullptr 与托管代码或本机代码. 编译器为托管空指针值和本机空指针值发出相应但不同 ...

  3. duilib库分析4.第二篇UIBase

    DUiLib 源码分析 ——以UiLib 1.01版为分析目标 ——colin3dmax 分析于2011-6-16 19:44------------------------------------- ...

  4. SpringCloud及其五大常用组件之Eureka和Zuul

    1.springcloud简介 SpringCloud是Spring旗下的项目之一,它是微服务架构的一种实现方式. 官网地址:http://projects.spring.io/spring-clou ...

  5. AFO成功

    在dcoi一年多,还是发生了不少事情. 过程中也有些小遗憾,有做错的事情,有搞砸的事情,有没办法挽回的事情,这种没法读档的辣鸡游戏也是无可奈何的.对所有被我搞砸的事情说声对不起啦,至少在下一次的时候, ...

  6. JavaScript中的文档对象模型

    1. DOM基本介绍1 什么是DOMDOM的英语全称为Document Object Model,翻译成中文就 是文档对象模型.也就是说,将整个文档看作是一个对象.而一个文档又是由很多节点组成的, 那 ...

  7. 新金融ABS如何做?听听这几十家券商、互金高管的经验之谈

    新金融ABS如何做?听听这几十家券商.互金高管的经验之谈 2016-11-24 零壹财经 ID:36104743 时间:2016年11月初 地点:北京东城区南湾子3号院(场地提供方:无讼.天同律师事务 ...

  8. import socketserver 模块 (27-03)

    使用socketserver实现并发聊天 服务端可以比喻做一部电话. ("127.0.0.1", 8000) 比喻做服务端的一个号码. 1,server.py import soc ...

  9. 「APIO 2019」奇怪装置

    题目 考虑推柿子 最开始的想法是如果两个\(t\)在\(mod\ B\)意义下相等,那么只需要比较一下\((t+\left \lfloor \frac{t}{B}\rfloor \right)mod\ ...

  10. Java核心-03 谈谈final、finally、 finalize有什么不同?

    今天,我要问你的是一个经典的 Java 基础题目,谈谈 final.finally. finalize 有什么不同? 典型回答 final 可以用来修饰类.方法.变量,分别有不同地意义,final修饰 ...