题意:给你点、边,求起点到终点的最短距离。

题解:由于题目的数据量特别大,所以需要用邻接表来存边,之后对Dijkstra算法稍微魔改一下就可以了,本来以为会超时,做好了打堆优化的准备,结果卡时间过了,可以说很开心了.

注意SPFA会超时。

#include <queue>
#include <cmath>
#include <stack>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = 20050;
const int INF = 1e9 + 7; struct node
{
int next,to,w;
}s[50050*2]; int head[maxn],f[maxn],dis[maxn],num,n,m,S,T; void add(int u,int v,int w)
{
s[num].to = v;
s[num].next = head[u];
s[num].w = w;
head[u] = num++;
} void SPFA()
{
int i,j,MIN,k,u;
for(i=0;i<n;i++)
{
dis[i] = INF;
f[i] = 0;
}
for(i=head[S];i!=-1;i=s[i].next)
{
u = s[i].to;
dis[u] = s[i].w;
}
f[S] = 1;
for(i=0;i<n;i++)
{
MIN = INF;
k = -1;
for(j=0;j<n;j++)
{
if(!f[j]&&dis[j]<MIN)
{
MIN = dis[j];
k = j;
}
}
if(MIN==INF)
break;
f[k] = 1;
for(j=head[k];j!=-1;j=s[j].next)
{
u = s[j].to;
if(!f[u]&&dis[k]+s[j].w<dis[u])
dis[u] = dis[k] + s[j].w;
}
}
if(dis[T]!=INF)
printf("%d\n",dis[T]);
else
printf("unreachable\n");
} int main()
{
int t,i,a,b,c,k = 1;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&n,&m,&S,&T);
for(i=0;i<n;i++)
head[i] = -1;
num = 0;
for(i=0;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
add(b,a,c);
}
printf("Case #%d: ",k++);
SPFA();
}
return 0;
}

UVa-10986_Sending email (向前星+Dijkstra)的更多相关文章

  1. 【bfs+链式向前星】防御僵尸(defend)计蒜客 - 45288

    题目: A 国有 n 座城市,n−1 条双向道路将这些城市连接了起来,任何两个城市都可以通过道路互通. 某日,A 国爆发了丧尸危机,所有的幸存者现在都聚集到了 A 国的首都(首都是编号为 1 的城市) ...

  2. POJ-3159(差分约束+Dijikstra算法+Vector优化+向前星优化+java快速输入输出)

    Candies POJ-3159 这里是图论的一个应用,也就是差分约束.通过差分约束变换出一个图,再使用Dijikstra算法的链表优化形式而不是vector形式(否则超时). #include< ...

  3. 图论 ---- spfa + 链式向前星 ---- poj 3268 : Silver Cow Party

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12674   Accepted: 5651 ...

  4. 模板——最小生成树prim算法&&向前星理解

    通过最小生成树(prim)和最短路径优化引出的向前星存图,时至今日才彻底明白了.. head[i]存储的是父节点为i引出的最后一条边的编号, next负责把head[i]也就是i作为父节点的所有边连接 ...

  5. Tarjan模版(链式向前星表示方法)

    这道模版用到了链式向前星表示法: struct node { int v,next; }edge[]; void add(int x,int y) { edge[++cnt].next=heads[x ...

  6. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  7. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

  8. 【数据结构】链式向前星知识点&代码

    代码: struct NODE{ int to; int nxt; int c; }node[MM];//链式向前星 ; void add(int a,int b,int c){ node[lcnt] ...

  9. uva 10986 - Sending email(最短路Dijkstra)

    题目连接:10986 - Sending email 题目大意:给出n,m,s,t,n表示有n个点,m表示有m条边,然后给出m行数据表示m条边,每条边的数据有连接两点的序号以及该边的权值,问说从点s到 ...

随机推荐

  1. [Array]122. Best Time to Buy and Sell Stock II(obscure)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. 基于LSTM对西储大学轴承故障进行分析

    这篇文章是小萌新对西储大学轴承故障进行分析,固定特征为故障直径为0.007,电机转速为1797,12k驱动端故障数据(Drive_End)即DE-time.故障类型y值:滚动体故障,内圈故障,3时,6 ...

  3. 解释器模式(Interpreter、Context、Expression)

    (给定一门语言,定义它的文法的一种表示,并定义一个解释器,该解释器使用该表示来解释语言中的句子.) 解释器模式的定义是一种按照规定语法进行解析的方案,在现在项目中使用的比较少,其定义如下: Given ...

  4. MacBook下为要运行的.net core 项目指定sdk版本

    安装完.net core 3.0,运行早期版本构建的项目遇到运行错误,查阅官方文档解决问题,特此记录!官方原文如下: SDK 使用最新安装的版本 SDK 命令包括 dotnet new 和 dotne ...

  5. chmod 777 修改权限之后,文件夹颜色变绿:解决方案

    修改前: 方法一: ls --color=none #不显示颜色 方法一修改后: 方法二:修改配色 ①安装git +++可用在windows下载之后用ftp传上去:http://pan.baidu.c ...

  6. ubuntu设置终端命令历史记录

    ----------------------------------------------- HISTTIMEFORMAT='%F %T ' # 使用HISTTIMEFORMAT在历史中显示TIME ...

  7. 下载并安装Cent OS 6.5

    到官网下载centos 6.5指引 官网:https://www.centos.org/     [当然也可以通过百度搜索,然后打开] 进入官网,选择"Get CentOS Now" ...

  8. 微服务开源生态报告 No.8

    「微服务开源生态报告」,汇集各个开源项目近期的社区动态,帮助开发者们更高效的了解到各开源项目的最新进展. 社区动态包括,但不限于:版本发布.人员动态.项目动态和规划.培训和活动. 非常欢迎国内其他微服 ...

  9. 开发者必看!探秘阿里云Hi购季开发者分会场:海量学习资源0元起!

    摘要: 开发者分会场致力于帮助开发者学习了解阿里云最新技术,为开发者设计全方位的技术成长与进阶之路. 2019阿里云云上Hi购季活动已经于2月25日正式开启,从已开放的活动页面来看,活动分为三个阶段: ...

  10. 全球城市群Megalopolis

    Megalopolis From Wikipedia, the free encyclopedia   (Redirected from Megalopolis (city type))   &quo ...