前言

是一道cf的比赛题..

比赛的时候C题因为自己加了一个很显然不对的特判WA了7次但找不出原因就弃疗了...

然后就想划水, 但是只做了AB又不太好... 估计rating会掉惨 (然而事实证明rating一点没变)

就去看看别的题,, 但是英语不好, 看题要看半天, 看看这个E题题目名称像是数论?(mmp估计是受到了古代猪文的影响). 点进去没仔细读题好像是个等价表达式一样的题目? 好像很麻烦还1h不写了(没错C题细节各种挂调了好久好久, 当时已经是很绝望了OvO)

结果这题tm是个dp...

题意

英文题一定要有的一个部分... 毕竟

这么长时间不学, 还会说英语吗? ——wcg

所以还是要翻译一下...

就是给一个运算符都被扣掉的表达式, 让你往里面填\(P\)个\(+\)和\(M\)个\(-\), 求最大的可能的结果.

表达式中的数字都是一位数, 而且每一层运算都套了一个括号, (这样才比较方便处理, 其实麻烦一点也能处理但是...)

分析

显然地, 我们可以把表达式画成一棵树. 以第四组样例为例, 我们可以画出一棵这样的树:

然后怎么建树啊, 我们知道这棵树肯定是从底往上建的, 所以我们要利用一种神奇的, 叫"栈"的数据结构.

我们用一个临时变量tmp来储存等待着父亲的左儿子. 这个左儿子可能是一个数, 也可能是一个点. 为了方便起见, 我们让点的标号从11开始(因为数字只有一位...那你说为什么不用10呢?).

  • 当我们扫到一个数字的时候, 把tmp设置为这个数字.
  • 当我们扫到一个?的时候, 我们建立一个新节点(其实就是++tot就行了), 将tmp作为他的左儿子, 右儿子先留空.

    然后将其入栈, 表示接下来的一个右儿子应该去找它.
  • 当我们遇到一个)的时候, 我们将tmp作为栈顶元素的右儿子. 然后将tmp设置为栈顶元素, 栈顶元素出栈.

发现自己并不能解释清楚为什么要这么搞... 自己画画图体会一下吧OvO.

建好树后我们来设计状态:

  • 令\(f[x][i]\)表示在以\(x\)为根的子树中使用了\(i\)个\(+\)得到的最大值
  • 由于有-的存在, 我们令\(g[x][i]\)表示在以\(x\)为根的子树中国使用了\(i\)个\(+\)得到的最小值

然后我们就记忆化搜索一波, 枚举\(+\)的个数做就行了, 对于当前节点:

  • 这个节点是个数字? 直接返回咯~

  • 两个儿子都是数字? 直接算咯~

  • 填\(+\):

    f[x][i]=max{f[lson[x]][j]+f[rson[x]][i-j-1]},j=0..i-1

    左右两儿子都取最大时和最大

    g[x][i]=min{g[lson[x]][j]+g[rson[x]][i-j-1]}

    左右两儿子都取最小时和最小

  • 填\(-\):

    f[x][i]=max{f[lson[x]][j]-g[rson[x]][i-j-1]}

    左儿子取最大, 右儿子取最小时差最大

    g[x][i]=min{g[lson[x]][j]-f[rson[x]][i-j-1]}

    左儿子取最小, 右儿子取最大时差最小.

这样就做完了(假的), 时间复杂度\(O(n*P)\), 可能会过不了.

而且空间复杂度也是\(O(n*P)\)的, 数组应该开不开..

但是呢\(min(P,M)\leq100\), 这样我们就可以分类讨论一下, 然后用上面的做法只枚举较少的那个符号...

这样时空复杂度就都能过辣...

代码(写的有点丑,没怎么压行,calcMax和calcMin基本是一样的...):

#include <cctype>
#include <cstdio>
#include <cstring>
const int INF=1000000007;
inline int max(const int &a,const int &b){return a>b?a:b;}
inline int min(const int &a,const int &b){return a<b?a:b;}
int t[5015][2],f[5005][102],g[5005][102],sz[5005];
int stk[5005],tp,cur,tot=10,rt;
char str[10010]; bool now;
void dfssz(int x){ //用子树中包含运算符的个数来排除一部分不合法状态.
sz[x]=1;
if(t[x][0]>10) dfssz(t[x][0]),sz[x]+=sz[t[x][0]];
if(t[x][1]>10) dfssz(t[x][1]),sz[x]+=sz[t[x][1]];
}
void init(){ //建树
memset(f,192,sizeof(f));
memset(g,127,sizeof(g));
int l=strlen(str),fa;
for(int i=0;i<l;++i){
if(isdigit(str[i]))
cur=str[i]-'0';
if(str[i]=='?'){
stk[++tp]=++tot;
t[tot][0]=cur;
}
if(str[i]==')'){
fa=stk[tp--];
t[fa][1]=cur;
cur=rt=fa;
}
}
dfssz(rt);
}
int calcMax(int x,int p);
int calcMin(int x,int p){
if(p<0||p>sz[x]) return INF;
if(x<10) return x;
if(sz[x]==1) return now==(bool)p?t[x][0]+t[x][1]:t[x][0]-t[x][1];
if(g[x][p]<INF) return g[x][p];
int mn=min(sz[t[x][0]],p),ans1,ans2;
for(int i=0;i<=mn;++i){
ans1=calcMin(t[x][0],i)+calcMin(t[x][1],p-now-i); //+
ans2=calcMin(t[x][0],i)-calcMax(t[x][1],p+now-1-i); //-
g[x][p]=min(g[x][p],min(ans1,ans2));
}
return g[x][p];
}
int calcMax(int x,int p){
if(p<0||p>sz[x]) return -INF;
if(x<10) return x;
if(sz[x]==1) return now==(bool)p?t[x][0]+t[x][1]:t[x][0]-t[x][1];
if(f[x][p]>-INF) return f[x][p];
int mn=min(sz[t[x][0]],p),ans1,ans2;
for(int i=0;i<=mn;++i){
ans1=calcMax(t[x][0],i)+calcMax(t[x][1],p-now-i); //+
ans2=calcMax(t[x][0],i)-calcMin(t[x][1],p+now-1-i); //-
f[x][p]=max(f[x][p],max(ans1,ans2));
}
return f[x][p];
}
int main(){
scanf("%s",str);
if(strlen(str)==1){puts(str);return 0;}
init();
int a,b; scanf("%d%d",&a,&b);
if(a<b) now=1; else now=0; //now用来标记+多还是-多
printf("%d",calcMax(rt,now?a:b));
}

过了一个假期颓成狗了... 代码都不会写了快...

啊啊啊啊啊下午还要测试怎么办啊~

【学术篇】CF935E Fafa and Ancient Mathematics 树形dp的更多相关文章

  1. CodeForces 935E Fafa and Ancient Mathematics (树形DP)

    题意:给定一个表达式,然后让你添加 n 个加号,m 个减号,使得表达式的值最大. 析:首先先要建立一个表达式树,这个应该很好建立,就不说了,dp[u][i][0] 表示 u 这个部分表达式,添加 i ...

  2. Codeforces 935E Fafa and Ancient Mathematics dp

    Fafa and Ancient Mathematics 转换成树上问题dp一下. #include<bits/stdc++.h> #define LL long long #define ...

  3. Codeforces 935E Fafa and Ancient Mathematics(表达式转树 + 树型DP)

    题目链接  Codeforces Round #465 (Div. 2) Problem E 题意  给定一个表达式,然后用$P$个加号和$M$个减号填充所有的问号(保证问号个数等于$P + M$) ...

  4. 【学术篇】一些水的不行的dp

    最近做了几道非常水非常水的dp...... 之后刷的一些水dp也会写在这里...... 此篇题目难度不递增!!! Emmmm....... 1.luogu1043数字游戏 以前看过这个题几遍,没做这个 ...

  5. NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]

    题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...

  6. CF 337D Book of Evil 树形DP 好题

    Paladin Manao caught the trail of the ancient Book of Evil in a swampy area. This area contains n se ...

  7. 动态规划——树形dp

    动态规划作为一种求解最优方案的思想,和递归.二分.贪心等基础的思想一样,其实都融入到了很多数论.图论.数据结构等具体的算法当中,那么这篇文章,我们就讨论将图论中的树结构和动态规划的结合——树形dp. ...

  8. Day1:T3 bfs T4 树形DP

    T3:BFS 回看了一下Day1的T3...感觉裸裸的BFS,自己当时居然没有看出来... 同时用上升和下降两种状态bfs即可 这一题还要注意一个细节的地方,就是题目要求的是求往返的最优解 k=min ...

  9. HDU5758 Explorer Bo 思维+树形dp

    题意自己看题目吧,挺短的. 思考过程:昨天感觉一天不做题很对不起自己,于是晚上跑到实验室打开别人树形dp的博客做了上面最后一个HDU的题,也是个多校题..一开始没有头绪了很久,因为起点不固定,所以这1 ...

随机推荐

  1. mybatis 教程(mybatis in action)

    目录简介: 一:开发环境搭建二:以接口的方式编程 三:实现数据的增删改查 四:实现关联数据的查询 五:与spring3集成(附源码) 六:与Spring MVC 的集成 七:实现mybatis分页(源 ...

  2. python之序列去重以及生成器、生成器函数、生成器表达式与迭代器浅谈

    首先要明确序列值类型是否可哈希,因为可哈希的值很简单就可以用 in /not in 写个生成器去判断,如果是不可哈希的就要去转换为可哈希的再用 in/not in 去判断 原地不可变类型(可哈希): ...

  3. JSP界面引用百度地图获取坐标

    需求: 需要在JSP界面上引用百度地图,文本框中输入地址之后,自动拿到在百度地图上的经纬度 解决步骤: 1.引入百度地图api: head中进行引用<script type="text ...

  4. Opencv 特征提取与检测-Haar特征

    Haar特征介绍(Haar Like Features) 高类间变异性 低类内变异性 局部强度差 不同尺度 计算效率高 这些所谓的特征不就是一堆堆带条纹的矩形么,到底是干什么用的?我这样给出 ...

  5. nodejs模块——fs模块 使用fs.read读文件

    使用fs.read读文件 fs.read() 先介绍fs.open. fs.open(path,flags,[mode],callback)方法用于打开文件,以便fs.read()读取. 参数说明: ...

  6. jQuery, js 验证两次输了密码的一相同

    <div class="form-group"> <label class="col-sm-2 control-label font"> ...

  7. Transactional事务管理操作

    Transactional的属性: alue String 可选的限定描述符,指定使用的事务管理器 propagation enum: Propagation 可选的事务传播行为设置 isolatio ...

  8. centos7 安装telent和telnet-server

    安装centos7 无telnet命令 先检查CentOS7.0是否已经安装以下两个安装包:telnet-server.xinetd.命令如下: rpm -q telnet-server rpm -q ...

  9. html+css判断各个IE浏览器版本

    html+css判断各个IE浏览器版本 在编写网页代码时,各种浏览器的兼容性是个必须考虑的问题,有些时候无法找到适合所有浏览器的写法,就只能写根据浏览器种类区别的代码,这时就要用到判断代码了. 在HT ...

  10. 戏说 .NET GDI+系列学习教程(三、Graphics类的应用_打印收银小票)

    #region 打印 /// <summary> /// 打印字符串内容 /// </summary> /// <returns></returns> ...